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Abstract

We introduce f -divergence, a concept from information theory and
statistics, for convex bodies in Rn. We prove that f -divergences are
SL(n) invariant valuations and we establish an affine isoperimetric
inequality for these quantities. We show that generalized affine surface
area and in particular the Lp affine surface area from the Lp Brunn
Minkowski theory are special cases of f -divergences.

1 Introduction.

In information theory, probability theory and statistics, an f -divergence is
a function Df (P,Q) that measures the difference between two probability
distributions P and Q. The divergence is intuitively an average, weighted by
the function f , of the odds ratio given by P and Q. These divergences were
introduced independently by Csiszár [2], Morimoto [37] and Ali & Silvey [1].
Special cases of f -divergences are the Kullback Leibler divergence or relative
entropy and the Rényi divergences (see Section 1).

Due to a number of highly influential works (see, e.g., [4] - [11], [14], [15],
[19], [20], [22] - [27], [29], [31], [34] - [36], [38], [42], [43] - [54], [56] - [58]),
the Lp-Brunn-Minkowski theory is now a central part of modern convex
geometry. A fundamental notion within this theory is Lp affine surface area,
introduced by Lutwak in the ground breaking paper [26].

It was shown in [52] that Lp affine surface areas are entropy powers
of Rényi divergences of the cone measures of a convex body and its polar,
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thus establishing further connections between information theory and convex
geometric analysis. Further examples of such connections are e.g. several
papers by Lutwak, Yang, and Zhang [28, 30, 32, 33] and the recent article
[39] where it is shown how relative entropy appears in convex geometry.

In this paper we introduce f -divergences to the theory of convex bod-
ies and thus strengthen the already existing ties between information theory
and convex geometric analysis. We show that generalizations of the Lp affine
surface areas, the Lφ and Lψ affine surface areas introduced in [23] and [21],
are in fact f -divergences for special functions f . We show that f -divergences
are SL(n) invariant valuations and establish an affine isoperimetric inequal-
ity for these quantities. Finally, we give geometric characterizations of f -
divergences.

Usually, in the literature, f -divergences are considered for convex func-
tions f . A similar theory with the obvious modifications can be developed
for concave functions. Here, we restrict ourselves to consider the convex
setting.

Further Notation.

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We write
Bn

2 for the Euclidean unit ball centered at 0 and Sn−1 for the unit sphere.
Volume is denoted by | · | or, if we want to emphasize the dimension, by
vold(A) for a d-dimensional set A.

Let K0 be the space of convex bodies K in Rn that contain the origin
in their interiors. Throughout the paper, we will only consider such K. For
K ∈ K0, K◦ = {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ K} is the polar body of K.
For a point x ∈ ∂K, the boundary of K, NK(x) is the outer unit normal in
x to K and κK(x), or, in short κ, is the (generalized) Gauss curvature in
x. We write K ∈ C2

+, if K has C2 boundary ∂K with everywhere strictly
positive Gaussian curvature κK . By µ or µK we denote the usual surface
area measure on ∂K and by σ the usual surface area measure on Sn−1.

Let K be a convex body in Rn and let u ∈ Sn−1. Then hK(u) is the
support function of K in direction u ∈ Sn−1, and fK(u) is the curvature
function, i.e. the reciprocal of the Gaussian curvature κK(x) at the point
x ∈ ∂K that has u as outer normal.
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2 f-divergences.

Let (X,µ) be a measure space and let dP = pdµ and dQ = qdµ be prob-
ability measures on X that are absolutely continuous with respect to the
measure µ. Let f : (0,∞) → R be a convex function. The ∗-adjoint func-
tion f∗ : (0,∞)→ R of f is defined by (e.g. [17])

f∗(t) = tf(1/t), t ∈ (0,∞). (1)

It is obvious that (f∗)∗ = f and that f∗ is again convex if f is con-
vex. Csiszár [2], and independently Morimoto [37] and Ali & Silvery [1]
introduced the f -divergence Df (P,Q) of the measures P and Q which, for
a convex function f : (0,∞)→ R can be defined as (see [17])

Df (P,Q) =
∫
{pq>0}

f

(
p

q

)
qdµ+ f(0) Q ({x ∈ X : p(x) = 0})

+ f∗(0) P ({x ∈ X : q(x) = 0}) , (2)

where
f(0) = lim

t↓0
f(t) and f∗(0) = lim

t↓0
f∗(t). (3)

We make the convention that 0 · ∞ = 0.

Please note that
Df (P,Q) = Df∗(Q,P ). (4)

With (3) and as

f∗(0) P ({x ∈ X : q(x) = 0}) =
∫
{q=0}

f∗
(
q

p

)
pdµ =

∫
{q=0}

f

(
p

q

)
qdµ,

we can write in short

Df (P,Q) =
∫
X
f

(
p

q

)
qdµ. (5)

For particular choices of f we get many common divergences. E.g. for
f(t) = t ln t with ∗-adjoint function f∗(t) = − ln t, the f -divergence is the
classical information divergence, also called Kullback-Leibler divergence or
relative entropy from P to Q (see [3])

DKL(P‖Q) =
∫
X
p ln

p

q
dµ. (6)
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For the convex or concave functions f(t) = tα we obtain the Hellinger inte-
grals (e.g. [17])

Hα(P,Q) =
∫
X
pαq1−αdµ. (7)

Those are related to the Rényi divergence of order α, α 6= 1, introduced by
Rényi [41] (for α > 0) as

Dα(P‖Q) =
1

α− 1
ln
(∫

X
pαq1−αdµ

)
=

1
α− 1

ln (Hα(P,Q)) . (8)

The case α = 1 is the relative entropy DKL(P‖Q).

3 f-divergences for convex bodies.

We will now consider f -divergences for convex bodies K ∈ K0. Let

pK(x) =
κK(x)

〈x,NK(x)〉n n|K◦|
, qK(x) =

〈x,NK(x)〉
n |K|

. (9)

Usually, in the literature, the measures under consideration are probability
measures. Therefore we have normalized the densities. Thus

PK = pK µK and QK = qK µK (10)

are measures on ∂K that are absolutely continuous with respect to µK . QK
is a probability measure and PK is one if K is in C2

+.
Recall that the normalized cone measure cmK on ∂K is defined as fol-

lows: For every measurable set A ⊆ ∂K

cmK(A) =
1
|K|

∣∣∣∣{ta : a ∈ A, t ∈ [0, 1]
}∣∣∣∣. (11)

The next proposition is well known. See e.g. [39] for a proof. It shows that
the measures PK and QK defined in (10) are the cone measures of K and
K◦. NK : ∂K → Sn−1, x→ NK(x) is the Gauss map.

Proposition 3.1. Let K be a convex body in Rn. Let PK and QK be the
probability measures on ∂K defined by (10). Then

QK = cmK ,
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or, equivalently, for every measurable subset A in ∂K QK(A) = cmK(A).
If K is in addition in C2

+, then

PK = N−1
K NK◦cmK◦

or, equivalently, for every measurable subset A in ∂K

PK(A) = cmK◦

(
N−1
K◦
(
NK(A)

))
. (12)

It is in the sense (12) that we understand PK to be the “cone measure”
of K◦ and we write PK = cmK◦ .

We now define the f -divergences of K ∈ K0. Note that 〈x,NK(x)〉 > 0
for all x ∈ ∂K and therefore {x ∈ ∂K : qK(x) = 0} = ∅. Hence, possibly
also using our convention 0 · ∞ = 0,

f∗(0) PK ({x ∈ ∂K : qK(x) = 0}) = 0.

Definition 3.2. Let K be a convex body in K0 and let Let f : (0,∞)→ R be
a convex function. The f -divergence of K with respect to the cone measures
PK and QK is

Df (PK , QK) =
∫
∂K

f

(
pK
qK

)
qKdµK

=
∫
∂K

f

(
|K|κK(x)

|K◦|〈x,NK(x)〉n+1

)
〈x,NK(x)〉

n|K|
dµK . (13)

Remarks.

By (4) and (13)

Df (QK , PK) =
∫
∂K

f

(
qK
pK

)
pKdµK = Df∗(PK , QK)

=
∫
∂K

f∗
(
pK
qK

)
qKdµK

=
∫
∂K

f

(
|K◦|〈x,NK(x)〉n+1

|K|κK(x)

)
κK(x) dµK

n|K◦|〈x,NK(x)〉n
. (14)

f -divergences can also be expressed as integrals over Sn−1,

Df (PK , QK) =
∫
Sn−1

f

(
|K|

|K◦|fK(u)hK(u)n+1

)
hK(u)fK(u)

n|K|
dσ (15)
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and

Df (QK , PK) =
∫
Sn−1

f

(
|K◦|fK(u)hK(u)n+1

|K|

)
dσK

n|K◦|hK(u)n
. (16)

Examples.

If K is a polytope, the Gauss curvature κK of K is 0 a.e. on ∂K. Hence

Df (PK , QK) = f(0) and Df (QK , PK) = f∗(0). (17)

For every ellipsoid E ,

Df (PE , QE) = Df (QE , PE) = f(1) = f∗(1). (18)

Denote by Conv(0,∞) the set of functions ψ : (0,∞)→ (0,∞) such that
ψ is convex, limt→0 ψ(t) = ∞, and limt→∞ ψ(t) = 0. For ψ ∈ Conv(0,∞),
Ludwig [21] introduces the Lψ affine surface area for a convex body K in
Rn

ΩΨ(K) =
∫
∂K

ψ

(
κK(x)

〈x,NK(x)〉n+1

)
〈x,NK(x)〉dµK . (19)

Thus, Lψ affine surface areas are special cases of (non-normalized) f -divergences
for f = ψ.

For ψ ∈ Conv(0,∞), the ∗-adjoint function ψ∗ is convex, limt→0 ψ(t) =
0, and limt→∞ ψ(t) =∞. Thus ψ∗ is an Orlicz function (see [18]), and gives
rise to the corresponding Orlicz-divergencesDψ∗(PK , QK) andDψ∗(QK , PK).

Let p ≤ 0. Then the function f : (0,∞) → (0,∞), f(t) = t
p

n+p , is
convex. The corresponding (non-normalized) f -divergence (which is also an
Orlicz-divergence) is the Lp affine surface area, introduced by Lutwak [26]
for p > 1 and by Schütt and Werner [47] for p < 1, p 6= −n. See also [12].

It was shown in [52] that all Lp affine surface areas are entropy powers
of Rényi divergences.

For p ≥ 0, the function f : (0,∞)→ (0,∞), f(t) = t
p

n+p is concave. The

corresponding Lp affine surface areas
∫
∂K

κ
p

n+p
K dµK

〈x,NK(x)〉
n(p−1)

n+p

are examples of Lφ

affine surface areas which were considered in [23] and [21]. Those, in turn
are special cases of (non-normalized) f -divergences for concave functions f .
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Let f(t) = t ln t. Then the ∗-adjoint function is f∗(t) = − ln t. The corre-
sponding f -divergence is the Kullback Leibler divergence or relative entropy
DKL(PK‖QK) from PK to QK

DKL(PK‖QK) =
∫
∂K

κK(x)
n|K◦|〈x,NK(x)〉n

ln
(

|K|κK(x)
|K◦|〈x,NK(x)〉n+1

)
dµK . (20)

The relative entropy DKL(QK‖PK) from QK to PK is

DKL(QK‖PK) = Df∗(PK , QK) (21)

=
∫
∂K

〈x,NK(x)〉
n|K|

log
(
|K◦|〈x,NK(x)〉n+1

|K|κK(x)

)
dµK .(22)

Those were studied in detail in [39].

Equations (15) and (16) of the above remark lead us to define f -divergences
for several convex bodies, or mixed f -divergences.

Let K1, . . . ,Kn be convex bodies in K0. Let u ∈ Sn−1. For 1 ≤ i ≤ n,
define

pKi(u) =
1

n|K◦i |hKi(u)
, qKi(u) =

fKi(u)hKi(u)
n |Ki|

. (23)

and measures on Sn−1 by

PKi = pKi σ and QKi = qKi σ. (24)

Let fi : (0,∞) → R, 1 ≤ i ≤ n, be convex functions. Then we define the
mixed f -divergences for convex bodies K1, . . . ,Kn in K0 by

Definition 3.3.

Df1...fn(PK1 × · · · × PKn , QK1 × · · · ×QKn) =
∫
Sn−1

n∏
i=1

[
fi

(
pKi

qKi

)
qKi

] 1
n

dσ

and

Df1...fn(QK1 × · · ·×QKn , PK1 × · · ·×PKn) =
∫
Sn−1

n∏
i=1

[
fi

(
qKi

pKi

)
pKi

] 1
n

dσ.
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Note that

Df∗1 ...f
∗
n
(PK1 × · · · × PKn , QK1 × · · · ×QKn)

= Df1...fn(QK1 × · · · ×QKn , PK1 × · · · × PKn).

Here, we concentrate on f -divergence for one convex body. Mixed f -
divergences are treated similarly. We also refer to [55], where they have
been investigated for functions in Conv(0,∞).

The observation (17) about polytopes holds more generally.

Proposition 3.4. Let K be a convex body in K0 and let f : (0,∞)→ R be
a convex function. If K is such that µK ({pK > 0}) = 0, then

Df (PK , QK) = f(0) and Df (QK , PK) = f∗(0).

Proof. µK ({pK > 0}) = 0 iff QK ({pK > 0}) = 0. Hence the assumption
implies that QK ({pK = 0}) = 1. Therefore,

Df (PK , QK) =
∫
∂K

f

(
pK
qK

)
qKdµK

=
∫
{pK>0}

f

(
pK
qK

)
qKdµK +

∫
{pK=0}

f

(
pK
qK

)
qKdµK

= f(0).

By (4), Df (QK , PK) = Df∗(PK , QK) = f∗(0).

The next proposition complements the previous one. In view of (18) and
(27), it corresponds to the affine isoperimetric inequality for f -divergences.
It was proved in [17] in a different setting and in the special case of f ∈
Conv(0,∞) by Ludwig [21]. We include a proof for completeness.

Proposition 3.5. Let K be a convex body in K0 and let f : (0,∞)→ R be
a convex function. If K is such that µK ({pK > 0}) > 0, then

Df (PK , QK) ≥ f
(
PK ({pK > 0})
QK ({pK > 0})

)
QK ({pK > 0}) + f(0) QK ({pK = 0})

(25)
and

Df (QK , PK) ≥ f∗
(
PK ({pK > 0})
QK ({pK > 0})

)
QK ({pK > 0})+f∗(0) QK ({pK = 0}) .

(26)
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If K is in C2
+, or if f is decreasing, then

Df (PK , QK) ≥ f(1) and Df (QK , PK) ≥ f∗(1) = f(1). (27)

Equality holds in (25) and (26) iff f is linear or K is an ellipsoid. If K
is in C2

+, equality holds in both inequalities (27) iff f is linear or K is an
ellipsoid. If f is decreasing, equality holds in both inequalities (27) iff K is
an ellipsoid.

Remark. It is possible for f to be deceasing and linear without having
equality in (27). To see that, let f(t) = at + b, a < 0, b > 0. Then, for
polytopes K (for which µK ({pK > 0}) = 0), Df (PK , QK) = f(0) = b >
f(1) = a + b. But, also in the case when 0 < µK ({pK > 0}) < 1, strict
inequality may hold.

Indeed, let ε > 0 be sufficiently small and let K = Bn
∞(ε) be a “rounded”

cube, where we have “rounded” the corners of the cube Bn
∞ with sidelength

2 centered at 0 by replacing each corner with εBn
2 Euclidean balls. Then

Df (PK , QK) = b+ a PK ({pK > 0}) > b+ a = f(1).

Proof of Proposition 3.5. Let K be such that µK ({pK > 0}) > 0, which
is equivalent to QK ({pK > 0}) > 0. Then, by Jensen’s inequality,

Df (PK , QK) = QK ({pK > 0})
∫
{pK>0}

f

(
pK
qK

)
qKdµK

QK ({pK > 0})
+ f(0) QK ({pK = 0})

≥ QK ({pK > 0}) f
(
PK ({pK > 0})
QK ({pK > 0})

)
+ f(0)QK ({pK = 0}) .

Inequality (26) follows by (4), as Df (QK , PK) = Df∗(PK , QK).

If K is in C2
+, QK ({pK > 0}) = 1, QK ({pK = 0}) = 0, PK ({pK > 0}) =

1 and PK ({pK = 0}) = 0. Thus we get that Df (PK , QK) ≥ f(1) and
Df (QK , PK) ≥ f∗(1) = f(1).

If f is decreasing, then, by Jensen’s inequality

Df (PK , QK) =
∫
∂K

f

(
pK
qK

)
qKdµK ≥ f

(∫
∂K

pKdµK

)
≥ f(1).

The last inequality holds as
∫
∂K pKdµK ≤ 1 and as f is decreasing.
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Equality holds in Jensen’s inequality iff either f is linear or pK
qK

is con-
stant. Indeed, if f(t) = at+ b, then

Df (PK , QK) =
∫
{pK>0}

(
a
pK
qK

+ b

)
qKdµK + f(0) QK ({pK = 0})

= aPK ({pK > 0}) + f(0).

If f is not linear, equality holds iff pK
qK

= c, c a constant. As by assumption
µK ({pK > 0}) > 0, c 6= 0. By a theorem of Petty [40], this holds iff K is an
ellipsoid.

The next proposition can be found in [17] in a different setting. Again,
we include a proof for completeness.

Proposition 3.6. Let K be a convex body in K0 and let f : (0,∞)→ R be
a convex function. Then

Df (PK , QK) ≤ f(0)+f∗(0)+f(1)
[
QK({0 < pK ≤ qK})+PK({0 < qK ≤ pK})

]
and

Df (QK , PK) ≤ f(0)+f∗(0)+f(1)
[
QK({0 < pK ≤ qK})+PK({0 < qK ≤ pK})

]
.

If f is decreasing, the inequalities reduce to Df (PK , QK) ≤ f(0) respectively,
Df (QK , PK) ≤ f∗(0).

Proof. It is enough to prove the first inequality. The second one follows
immediately form the first by (4).
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Df (PK , QK) =
∫
∂K

f

(
pK
qK

)
qKdµ

=
∫
{pK>0}

f

(
pK
qK

)
qKdµ+ f(0) QK({pK = 0})

= f(0) QK({pK = 0}) +
∫
{0<pK}∩{f ′≥0}

f

(
pK
qK

)
qKdµ

+
∫
{0<pK}∩{f ′≤0}

f

(
pK
qK

)
qKdµ

≤ f(0)
[
QK({pK = 0}) +QK

(
{pK > 0} ∩ {f ′ ≤ 0}

) ]
+
∫
{0<pK≤qK}∩{f ′≥0}

f

(
pK
qK

)
qKdµ+

∫
{0<qK≤pK}∩{f ′≥0}

f

(
pK
qK

)
qKdµ

≤ f(0) + f(1) QK
(
{0 < pK ≤ qK} ∩ {f ′ ≥ 0}

)
+

∫
{0<qK≤pK}∩{f ′≥0}

f∗
(
qK
pK

)
pKdµ

= f(0) + f(1) QK
(
{0 < pK ≤ qK} ∩ {f ′ ≥ 0}

)
+

∫
{0<qK≤pK}∩{f ′≥0}∩{(f∗)′≥0}

f∗
(
qK
pK

)
pKdµ

+
∫
{0<qK≤pK}∩{f ′≥0}∩{(f∗)′≤0}

f∗
(
qK
pK

)
pKdµ

≤ f(0) + f(1) QK
(
{0 < pK ≤ qK} ∩ {f ′ ≥ 0}

)
+ f∗(1) PK

(
{0 < qK ≤ pK} ∩ {f ′ ≥ 0} ∩ {(f∗)′ ≥ 0}

)
+ f∗(0) PK

(
{0 < qK ≤ pK} ∩ {f ′ ≥ 0} ∩ {(f∗)′ ≤ 0}

)
≤ f(0) + f∗(0) PK

(
{0 < qK ≤ pK} ∩ {f ′ ≥ 0}

)
+f(1)

[
QK({0 < pK ≤ qK} ∩ {f ′ ≥ 0}) + PK({0 < qK ≤ pK} ∩ {f ′ ≥ 0})

]
.

It follows from the last expression that, if f is decreasing, the inequality
reduces to Df (PK , QK) ≤ f(0).

The next proposition shows that f -divergences are GL(n) invariant and
that non-normalized f -divergences are SL(n) invariant valuations. For func-
tions in Conv(0,∞), this was proved by Ludwig [21].

For functions in Conv(0,∞) the expressions are also lower semicontin-
uous, as it was shown in [21]. However, this need not be the case anymore
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if we assume just convexity of f . Indeed, let f(t) = t2 and let K = Bn
2

be the Euclidean unit ball. Let (Kj)j∈N be a sequence of polytopes that
converges to Bn

2 . As observed above, Df (PKj , QKj ) = f(0) = 0 for all j.
But Df (PBn

2
, QBn

2
) = f(1) = 1.

Let P̃K = κKµK

〈x,NK(x)〉n and Q̃K = 〈x,NK(x)〉µK . Then we will denote by

Df (P̃K , Q̃K) and Df (Q̃K , P̃K) the non-normalized f -divergences. We will
also use the following lemma from [47] for the proof of Proposition 3.8.

Lemma 3.7. Let K be a convex body in K0. Let h : ∂K → R be an integrable
function, and T : Rn → Rn an invertible, linear map. Then∫

∂K
h(x)dµK = |det(T )|−1

∫
∂T (K)

f(T−1(y))
‖T−1t(NK(T−1(y)))‖

dµT (K).

Proposition 3.8. Let K be a convex body in K0 and let f : (0,∞)→ R be a
convex function. Then Df (PK , QK) and Df (QK , PK) are GL(n) invariant
and Df (P̃K , Q̃K) and Df (Q̃K , P̃K) are SL(n) invariant valuations.

Proof. We use (e.g. [47]) that

〈T (x), NT (K)(T (x)〉 =
〈x,NK(x)〉

‖T−1t(NK(x))‖
,

and
κK(x) = ‖T−1t(NK(x))‖n+1 det(T )2κT (K)(T (x))

and Lemma 3.7 to get that

Df (PK , QK) =
∫
∂K

f

(
pK(x)
qK(x)

)
qK(x)dµ(x)

=
1

|det(T )|

∫
∂T (K)

f
(
pK(T−1(y))
qK(T−1(y))

)
qK(T−1(y))dµT (K)

‖T−1t(NK(T−1(y)))‖
= Df (PT (K), QT (K)).

The formula for Df (QK , PK) follows immediately from this one and (4).
The SL(n) invariance for the non-normalized f -divergences is shown in the
same way.

Now we show that Df (P̃K , Q̃K) and Df (Q̃K , P̃K) are valuations, i.e. for
convex bodies K and L in K0 such that K ∪ L ∈ K0,

Df (P̃K∪L, Q̃K∪L) +Df (P̃K∩L, Q̃K∩L) = Df (P̃K , Q̃K) +Df (P̃L, Q̃L). (28)
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Again, it is enough to prove this formula and the one for Df (Q̃K , P̃K) follows
with (4). To prove (28), we proceed as in Schütt [44]. For completeness, we
include the argument. We decompose

∂(K ∪ L) = (∂K ∩ ∂L) ∪ (∂K ∩ Lc) ∪ (Kc ∩ ∂L),

∂(K ∩ L) = (∂K ∩ ∂L) ∪ (∂K ∩ intL) ∪ (intK ∩ ∂L),

∂K = (∂K ∩ ∂L) ∪ (∂K ∩ Lc) ∪ (∂K ∩ intL),

∂L = (∂K ∩ ∂L) ∪ (∂Kc ∩ ∂L) ∪ (intK ∩ ∂L),

where all unions on the right hand side are disjoint. Note that for x such
that the curvatures κK(x), κL(x), κK∪L(x) and κK∩L(x) exist,

〈x,NK(x)〉 = 〈x,NL(x)〉 = 〈x,NK∩L(x)〉 = 〈x,NK∪L(x)〉 (29)

and

κK∪L(x) = min{κK(x), κL(x)}, κK∩L(x) = max{κK(x), κL(x)}. (30)

To prove (28), we split the involved integral using the above decompositions
and (29) and (30).

4 Geometric characterization of f-divergences.

In [52], geometric characterizations were proved for Rényi divergences. Now,
we want to establish such geometric characterizations for f -divergences as
well. We use the surface body [47] but the illumination surface body [54] or
the mean width body [13] can also be used.

Let K be a convex body in Rn. Let g : ∂K → R be a nonnegative,
integrable, function. Let s ≥ 0.

The surface body Kg,s, introduced in [47], is the intersection of all closed
half-spaces H+ whose defining hyperplanes H cut off a set of fµK-measure
less than or equal to s from ∂K. More precisely,

Kg,s =
⋂

R
∂K∩H− gdµK≤s

H+.

For x ∈ ∂K and s > 0

xs = [0, x] ∩ ∂Kg,s.

13



The minimal function Mg : ∂K → R

Mg(x) = inf
0<s

∫
∂K∩H−(xs,NKg,s (xs)) g dµK

voln−1

(
∂K ∩H−(xs, NKg,s(xs))

) (31)

was introduced in [47]. H(x, ξ) is the hyperplane through x and orthogonal
to ξ. H−(x, ξ) is the closed halfspace containing the point x + ξ, H+(x, ξ)
the other halfspace.

For x ∈ ∂K, we define r(x) as the maximum of all real numbers ρ so
that Bn

2 (x− ρNK(x), ρ) ⊆ K. Then we formulate an integrability condition
for the minimal function∫

∂K

dµK(x)

(Mg(x))
2

n−1 r(x)
<∞. (32)

The following theorem was proved in [47].

Theorem 4.1. Let K be a convex body in Rn. Suppose that f : ∂K → R is
an integrable, almost everywhere strictly positive function that satisfies the
integrability condition (32). Then

cn lim
s→0

|K| − |Kg,s|
s

2
n−1

=
∫
∂K

κ
1

n−1

K

g
2

n−1

dµK ,

where cn = 2|Bn−1
2 |

2
n−1 .

Theorem 4.1 was used in [47] to give geometric interpretations of Lp
affine surface area and in [52] to give geometric interpretations of Rényi
divergences. Now we use this theorem to give geometric interpretations of
f -divergence for cone measures of convex bodies.

For a convex function f : (0,∞)→ R, let gf , hf : ∂K → R be defined as

gf (x) =

n|K◦|nn|K|n pKqK(
f
(
pK
qK

))n−1


1
2

(33)

and

hf (x) = gf∗(x) =

n|K◦|nn|K|n qnK/p
n−2
K(

f
(
pK
qK

))n−1


1
2

. (34)
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Corollary 4.2. Let K be a convex body in K0 and let f : (0,∞) → R be
convex. Let gf , hf : ∂K → R be defined as in (33) and (34). If gf and hf
are integrable, almost everywhere strictly positive functions that satisfy the
integrability condition (32), then

cn lim
s→0

|K| − |Kgf ,s|

s
2

n−1

= Df (PK , QK)

and

cn lim
s→0

|K| − |Khf ,s|

s
2

n−1

= Df (QK , PK)

Proof. The proof of the corollary follows immediately from Theorem 4.1.
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