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Relative entropy of cone measures and L, centroid bodies

Grigoris Paouris and Elisabeth M. Werner

ABSTRACT

Let K be a convex body in R". We introduce a new affine invariant, which we call Qx, that can
be found in three different ways:

(a) as a limit of normalized Ly-affine surface areas;

(b) as the relative entropy of the cone measure of K and the cone measure of K°;

(c¢) as the limit of the volume difference of K and L,-centroid bodies.
We investigate properties of Qi and of related new invariant quantities. In particular, we show
new affine isoperimetric inequalities and we show an ‘information inequality’ for convex bodies.

1. Introduction

An important affine invariant quantity in convex geometric analysis is the L,-affine surface
area, which, for a convex body K in R™ and —oco < p < 00, p # —n, is defined by

B kg (z )P/ (HP)
asp(K) = JaK o Ny () oD e (): (1.1)

We see that x(x) = ki (x) is the generalized Gaussian curvature at the boundary point = of
K, Nk (z) is the outer unit normal vector at « to K, the boundary of K and p = ug is the
surface area measure on the boundary 0K.

We denote by | K| the n-dimensional volume of the convex body K and by K° = {y € R™:
(z,y) < 1} the polar body of K. We use the L,-affine surface area to introduce a new affine
invariant {2k as a limit of normalized L,-affine surface areas:

Qx = lim (aSP(K))Hp. (1.2)

p—oo \ n|K°]

This is a first way how Qx appears.

The second way how Qg appears is as the exponential of the relative entropy or Kullback—
Leibler divergence Dxi, of the cone measures cmy and cmgo of a convex body K and its polar
body K°:

°l

Ql/n . |K

= K] eXp(—DKL(NKNf(gcmaKo||cm3K)). (1.3)

Here N ;(1 is the inverse of the Gauss map. We refer to Section 3 for its definition and that of
the relative entropy and the cone measures.

For a convex body K in R™ of volume 1 and 1 < p < oo, the L, centroid body Z,(K) is this
convex body that has support function

2,00 = (| <x,9>|pdx>l/p. (14)
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The study of the asymptotic behavior of the volume of L, centroid bodies as p tends to infinity
resulted in the discovery that, for a symmetric convex body K of volume 1,

_2p ((1—n(n+1)logp/2p)|Z5 (K)| 1oy
p£“;on< K] “l) =gl g (15)

This is the third way how Qg appears.

Thus, the invariant Qg introduces a novel idea (relative entropy) into the theory of convex
bodies and links concepts from classical convex geometry, like L,, centroid bodies and Lj-affine
surface area, with concepts from information theory. Such links have already been established.
Guleryuz, Lutwak, Yang and Zhang [18, 35-38]) use L,, Brunn-Minkowski theory to develop
certain entropy inequalities. Also, classical Brunn—Minkowski theory is related to information
theoretic concepts (see, for example, [3, 4, 13, 14]).

An important affine invariant quantity in convex geometric analysis is the affine surface area,
which, for a convex body K € R", is defined as

asy (K) = LK kYD () dp(x). (1.6)

Originally, a basic affine invariant from the field of affine differential geometry, it has recently
attracted increased attention (for example, [5, 32, 40, 49, 56]). It is fundamental in the theory
of valuations (see, for example, [1, 2, 22, 29]), in approximation of convex bodies by polytopes
(for example, [17, 30, 50]) and it is the subject of the affine Plateau problem solved in R? by
Trudinger and Wang [54, 55].

The definition (1.6), at least for convex bodies in R? and R3 with sufficiently smooth
boundary, goes back to Blaschke [8] and was extended to arbitrary convex bodies by, for
example, [27, 32, 40, 49]. Schiitt and Werner showed in [49] that the affine surface area
equals
K| —|K
asi(K) = lim cn%,
where ¢, is a constant depending only on n and K5 is the convex floating body of K (see [49]):
the intersection of all half-spaces H' whose defining hyperplanes H cut off a set of volume §
from K.

It was shown by Milman and Pajor [42] that if K is a symmetric convex body, then, for large
0, the floating body K is always uniformly, up to a factor ¢(¢) depending on 4, isomorphic to
the dual of the Binet ellipsoid from classical mechanics and consequently K73 is isomorphic (up
to a factor ¢(d)) to the Binet ellipsoid.

Lutwak and Zhang [39] generalized the notion of Binet ellipsoid and introduced the L,
centroid bodies defined by their support function hz (k) as given in (1.4).

Note that in [39] a different notation and normalization was used for the centroid body.
In the present paper, we follow the notation and normalization that appeared in [45].

The results of this paper deal mostly with centrally symmetric convex bodies K. Symmetry
is assumed mainly because the L, centroid bodies are symmetric by definition (1.4) and used
to approximate the convex bodies K. There exists a non-symmetric definition of L,, centroid
bodies in [28] (see also [19]). Using this definition, we feel the results of the paper can be
carried over to non-symmetric convex bodies.

In Theorem 2.2, we generalize the result by Milman and Pajor mentioned above and show
that the floating body Ky is, up to a universal constant, homothetic to the centroid body
Zog, ) (K).-

The L,-affine surface area, an extension of affine surface area, was introduced by Lutwak
in the ground-breaking paper [33] for p > 1, and by Schiitt and Werner [51] for general p.
It is now at the core of the rapidly developing L, Brunn-Minkowski theory. Contributions
here include new interpretations of L,-affine surface areas [41, 50, 51, 56, 57|, the study of
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solutions of non-trivial ordinary and partial differential equations (see, for example, Chen [11],
Chou and Wang [12], Stancu [52, 53]), the study of the L, Christoffel-Minkowski problem by
Hu, Ma and Shen [20], characterization theorems by Ludwig and Reitzner [29] and the study
of L,-affine isoperimetric inequalities by Lutwak [33] and Werner and Ye [56, 57].

From now on we shall always assume that the centroid of a convex body K in R™ is at the
origin. We write K € C2, if K has C? boundary with everywhere strictly positive Gaussian
curvature kg . For real p # —n we define the L,-affine surface area as,(K) of K as in [33]
(p>1)and [51] (p < 1,p# —n) as in (1.1) by

K (x)p/(nﬂ?)
asp (K) = LK (z, Nﬁ@)n@—l)/(nm dpxc(z)
and
astoo(K) = LK m dpk (), (1.7)

provided the integrals exist. In particular, for p = 0,

() = | {o, Nic(o)) dpae(@) = ]
OK
For p =1 we get the classical affine surface area (1.6) which is independent of the position of
K in space.
In Section 3, we introduce the new affine invariant

asp(K) mr

n|Ke| ) ’

and describe properties of this new invariant. For example, in Corollary 3.9 we prove the

remarkable identity (1.3), which shows that the invariant Q is the exponential of the relative

entropy or Kullback—Leibler divergence Dk, of the cone measures cmg and cmgeo of K and K°.
We show that the information inequality [13] for the relative entropy of the cone measures

implies an ‘information inequality’ for convex bodies

K| )n
QK<(
| K|

with equality if and only if K is an ellipsoid. Independently, we can derive this inequality from
properties of the L,-affine surface areas.

The next proposition gives a sample of some inequalities that hold for the affine invariant
Qk, among them an isoperimetric inequality. More can be found in Proposition 3.5.

QK: lim (

PROPOSITION. Let K be a convex body with its centroid at the origin.

(i) For allp >0, Qg < (as,(K)/n|K°|)"?.
(ii) We have Qg < (|K|/|K°])".
(iii) If in addition |K| =1, then Qo < Q(pg/\By|1/n)e-

If K is in addition in C%, then equality holds in (i) and (ii) if and only if K is an ellipsoid
and in (iii) if and only if K is a normalized ellipsoid.

Theorem 2.2 states that the floating body K is, up to a universal constant, homothetic to
the centroid body Ziog, /25)(K ). This, and the geometric interpretations of L-affine surface
areas in terms of variants of the floating bodies [51, 56, 57], led us to investigate the L,
centroid bodies also in the context of affine surface area. Note the similarities in behavior of
the floating body and the L, centroid body. Both ‘approximate’ K as 6 — 0, and p — oo,
respectively: If K is symmetric and of volume 1, then Z,(K) — K as p — oo.
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We found an amazing connection between the L, centroid bodies and the new invariant (1.
The precise statement is given in Theorem 4.1 for convex bodies in Cf_. A forthcoming paper
will address general convex bodies.

In view of Theorem 2.2, the first part of Theorem 4.1 came as a surprise to us because it
reveals a different behavior of the bodies K; and Zjog (1/5)(K) when § — 0. Indeed, it was
shown in [41] that, with a constant ¢, that depends on n only,

. |(K5)°] — [ K°| °
N en =57t = #-n(nr2) (K) = 85-n/ (i) (K7),
whereas
D e o n(n+1)
1 Z°(K)| - |K°|) = ——“|K°|.
P e GGl Ll 5 IK°

Even more surprising is the second part of Theorem 4.1, which, combined with
Proposition 3.6, shows how the new invariant and the L, centroid bodies are related via the
formula (1.5). The details are given in Section 4.

Further notation. We work in R™, which is equipped with a Euclidean structure (-,-). We
denote by || - ||2 the corresponding Euclidean norm, and write B for the Euclidean unit ball,
and S"~1! for the unit sphere. Volume is denoted by | - |. We write o for the rotationally invariant
surface measure on S™ 1.

A convex body is a compact convex subset C' of R™ with non-empty interior. We say
that C' is 0-symmetric, if x € C' implies that —z € C. We say that C has center of mass
at the origin if fc (x,0) dx = 0 for every 6§ € S"~1. The support function ho : R® — R of C is
defined by he(x) = max{(z,y) : y € C}. The polar body C° of C'is C° = {y € R" : (z,y) < 1
for all x € C'}.

Whenever we write a >~ b, we mean that there exist absolute constants ¢, co > 0 such that
c1a < b < cga. The letters ¢, ¢, ¢1, ca and so on. denote absolute positive constants which may
change from line to line. We refer the reader to the books [47, 48] for basic facts from the
Brunn—Minkowski theory and the asymptotic theory of finite-dimensional normed spaces.

2. Comparison of floating bodies and L,, centroid bodies

It is well known from mechanics that the body Z5(K) is an ellipsoid. Its polar body Z5(K) is
called the Binet ellipsoid of inertia. We see that Z;(K) = Z(K) is the classical centroid body
and it is a zonoid by definition (see [15, 48]).

The isotropic constant Ly of a convex body K € R" is defined as

Here L is an affine invariant and Lg > L By -

A major open problem in convex geometry asks if there exists a universal constant C' > 0
such that Lx < C. The best known result up to date is due to Klartag [23] and states that
Lg < Cn'/*, improving by a factor of logarithm an earlier result by Bourgain [9].

Let us briefly state some of the known properties of the L, centroid bodies. For the proofs
and further references, see [45].

Let T' € SL(n), that is, T : R™ — R™ is a linear operator with determinant 1. Let 7% denote
its adjoint. Then

oo = (| 1o o) . (] 1z @ipras) e 0)

or

hyz, iy (0) = hoiz, k) (0).
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By Hoélder’s inequality, we have for 1 <p <g<oo and convex bodies K in R" with
|K| =1, that
Z1(K) € Z,(K) € Z,(K) € Zo(K) = K. (2.1)
As an application of the Brunn—Minkowski inequality, one has for 1 < p < ¢ < oo that
ZJ(K) € L z,(K). (2.2)
p

Here ¢ > 0 is a universal constant.

Inequality (2.2) is sharp with the right constant for the I}-ball [7].

By Brunn’s principle we get, for p>n and a (new) absolute constant ¢ >0 (for
example, [44]),

Z,(K) 2 K. (2.3)

Lutwak, Yang and Zhang [34] and Lutwak and Zhang [39] proved the following L, versions
of the Blaschke Santald inequality and the Busemann—Petty inequality; see also Campi and
Gronchi [10] for an alternative proof.

THEOREM 2.1 [34, 39]. Let K be a convex body in R™ of volume 1. Then, for every

I<p<oo,
BTL
7% 1z )|
SNEARE

Bn
7 ——2
8 (IBSII/”>’

with equality if and only if K is an ellipsoid.

|17, (K)| <

|Zp(K)| >

A computation shows that |Z,(By/|B5|)|'/™ =~ \/p/(n + p). Hence, the following inequality,
proved in [45] for all p > 1 and a universal constant ¢ > 0, can be viewed as an ‘Inverse
Lutwak—Yang-Zhang inequality’:

p
n-+p

| Z,(K) Y™ < ¢ L. (2.4)

We now want to compare L, centroid bodies and floating bodies. As K is symmetric and has
volume 1, the floating body Ky, for 6 € [0, 1], may be defined in the following way [49]:

Ks= () {z€K:|(z,0)] <t} (2.5)

fesn—1
where tg = sup{t > 0: [{x € K : [(z,0)| <t}| =1 — d}. Hence, for every § € S"~!, one has that
hi,(0) = tg. (2.6)

THEOREM 2.2. Let K be a symmetric convex body in R™ of volume 1. Let § € (0,1).

2
Then we have, for every § € S*~1,

Clhzlog(e/gg)(K)(e) < hk, (0) < CQthog(e/za)(K) (0)
or, equivalently,
1210 (e)25) () € K5 C c2Z16g (e/25) (K),

where c¢1,co > 0 are universal constants. Consequently,

1 o o 6 [e]
ang(e/za)(K) 2 K5 2 aZ1og(e/25)(K)~
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Proof. Assume first that 6 € (1/e,1/2). Then the fact that K is isomorphic to Z3(K) has
already been proved in [42]. Moreover, a result of Latala [25] shows that Z,(K) is isomorphic
to Z2(K) for p € (0,2). So we may assume that § < 1/e. We apply Markov’s inequality in (1.4)
and get

[z € K : (2, 0)] > eh, 1) (O)H < €.
Then (2.6) gives, for all p > 1
ehZP(K)(H) 2 hKe—p ((9) (27)

For the other side we use the Paley—Zygmund inequality: If Z > 0 is a random variable with
finite variance and X € (0,1), then

Pr{Z > \E(Z)} > (1 — w%gj.
Hence, for Z = |(x,0)|" we get
Hx e K:|{x,0) > AJK [{(x,0)|P dm}‘ >(1- {K || Zpdzi (2.8)
K

We see that (2.2) implies that hyz, (x)(0) < 2chz, (x)(0) for all 6 € S"~!. So

(e 0) dey? 2(1)2’{

J i N, 0)]% dac 2

2c
Choose A = 3. Then (2.8) becomes

o € K : [(2,0)| > 5hz,(x)(0)}] > e=P.
Now we use again (2.6) to get
shz,0(0) < hi ., (0)
or
hi,_,(0) 2 %th/cl(K)(a) > e2hz, (1) (0), (2.9)
where we have used (2.2) again. Equations (2.7) and (2.9) then imply that
cahyz,x)(0) < hie_,(0) < ehg,x)(0).

Now choose p = log (e/24§). This gives the theorem. O

One does not expect that floating bodies and L, centroid bodies are identical in general.
Indeed, observe that, for p < oo, the bodies Z,(K) are C*°. However, one can easily check that
the floating body of the cube has points of non-differentiability on the boundary.

Theorem 2.2 allows us to ‘pass’ results about L, centroid bodies to floating bodies.
In particular, (2.1) and (2.3) imply that, for § < e™™, Kj is isomorphic to K:

K5 g K g ClK(;.
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Moreover, (2.1) and (2.2) imply that

1 26
Ks, C Ks, C CQM
log (e/202)
where ¢q, co > 0 are universal constants.
As a consequence, we get the following corollary. There, d(K, L) and dpnm (K, L), respectively,
mean the geometric Banach—Mazur distance of two convex bodies K and L:

K527 for 51 g 623

1
d(K, L) :inf{a-b: KCLCbK},
a
dpm(K, L) = inf{d(K,T(L)) : T is a linear operator}.
It is known that one may choose a T' € SL(n) such that T'(K /5) is isomorphic to BY (see [42]
for details).

COROLLARY 2.3. Let K be a symmetric convex body of volume 1. Then, for every ¢ € (0,1),
one has

1
dpm(Ks, By) < ¢ log 5
and
n
K5, K)~ d(Ks, Ky n) < cg——r—
d( ) ) d( & e ) Cglog(1/5)

where ¢y, co > 0 are universal constants.

Let us note that Theorem 2.1 and (2.4) imply sharp (up to Lg) bounds for the volume of
Ks; namely, letting ¢s = max{log(1/4),1},

Cs Cs

< |K§|1/" < e

L
n + cs n+ cs o

C1
where c¢q, co > 0 are universal constants.
REMARK. The corollary is also true for non-symmetric K.

In view of a result of Latala and Wojtaszczyk [26], Theorem 2.2 has another consequence:
The floating body of a symmetric convex body K corresponds to a level set of the Legendre
transform of the logarithmic Laplace transform on K.

Let x € R™ and K be a symmetric convex body of volume 1. Let

Aj () := sup {(m,u> — logJ el@w) dx}

u€eR” K

be the Legendre transform of the logarithmic Laplace transform on K.
For any r > 0 let B,.(K) be the convex body defined as

B.(K):={z € R": N (z) <7}
It was proved in [26] that B, (K) is isomorphic to Z,(K),
¢1Zp(K) C By(K) € c2Z,(K),

where c¢q, co > 0 are universal constants.
We combine this with Theorem 2.2 and obtain the following proposition.
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PROPOSITION 2.4. Let K be a symmetric convex body of volume 1 in R™. Then, for every
§ € (0,3), one has that

1 1
c1 {xER":A}{(x) glogé} C Ks Cey {mER":A}{(x) <log5},

c1,co > 0 are universal constants.

3. Relative entropy of cone measures and related inequalities

Let K be a convex body in R™ with its centroid at the origin. For real p # —n the L,-affine
surface area as,(K) of K was defined in (1.1) and (1.7) in Section 1.

If K is in C%, then (1.1) and (1.7) can be written as integrals over the boundary 9B = S™~!
of the Euclidean unit ball By in R":

- Frc () (+9)
asp(K) = LH e (w07 97
and
1 o

Here fx(u) is the curvature function, that is, the reciprocal of the Gauss curvature x(x) at
that point « in 0K that has u as the outer normal.
First, we recall results proved in [56].

PROPOSITION 3.1 [56]. Let K be a convex body in R™ such that u{z € 0K : k(x) = 0} = 0.
Let p # —n be a real number. Then the following properties are satisfied.

) The function p — (as,(K)/ase(K))"? is decreasing in p € (—n,o0).
(ii) The function p — (as,(K /n\K"\)"“‘p is decreasing in p € (—n, 00).
iii) The function p — (as,(K)/n|K|)**tP)/? js increasing in p € (—n,00).

) We have that as,(K) = as,z2/,(K°).

REMARK. (i) It was shown in [21] that, for p > 0, (iv) holds without any assumptions on
the boundary of K.

(ii) Also, it follows from the proof in [56] that (i)—(iii) hold without assumptions on the
boundary of K if p > 0.

(iii) Proposition 3.1(ii) is not explicitly stated in [56], but follows (without any assumptions
on the boundary of K if p > 0) from, for example, inequality [56, (4.20)] and the following fact
(see [61]): Let K be a convex body in R™. Then

aseo (K) < n|K°| (3.2)

with equality if K is in C%.

(iv) Strict monotonicity in Proposition 3.1(i)—(iii).
Proposition 3.1(i)—(iii) was proved in [56] using Holder’s inequality. It follows immediately
from the characterization of equality in Holder’s inequality, that strict monotonicity holds in
Proposition 3.1(i)—(iii) if and only if y, almost everywhere (a.e) on 0K

r(x)
My .
(@, N(z))»*+t 7
where ¢ > 0 is a constant, unless x(x) =0 u, a.e. on K. If k(z) =0 u, a.e. on K, then,
for all p >0, (as,(K)/ase(K))"? = constant = 0, (as,(K)/n|K°|)""? = constant = 0 and
(asp(K)/n|K|)"*+P)/P = constant = 0.
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If K is in Ci, then the following theorem due to Petty [46] implies that we have strict
monotonicity in Proposition 3.1(i)—(iii) unless K is an ellipsoid, in which case the quantities in
Proposition 3.1(i)—(iii) are all constant equal to 1.

THEOREM 3.2 [46]. Let K be a convex body in C%. We have that K is an ellipsoid if and
only if, for all x in 0K,

where ¢ > 0 is a constant.
We now introduce new affine invariants.
DEFINITION 3.3. (i) Let K be a convex body in R™ with its centroid at the origin. We define

)

p—o0

(ii) Let K, ..., K, be convex bodies in R™, all with their centroids at the origin. We define

asy(K1,...,K,) \""7
aSoo(Kla"-aKn) -

QKl LK, = hm
seeey psco

Here

as (K1) K) = J loag, ()P fie () - AP frc, ()] ) dor(u)
Snf 1

is the mixed p-affine surface area introduced for 1 < p < oo in [33] and for general p in [57]:
1 1
Ki,...,K,) = .
aSOO( b ’ n) J‘Snfl hK1 (’LL) hKn (u)
=nV(K7?,...,K;)

do(u)

is the dual mixed volume of K7,..., K?, introduced by Lutwak [31].

REMARK. (i) If pu{x € OK : k(z) =0} =0, then Qi > 0. If k(x) =0 p -a.e. on 0K, then
Qg = 0. In particular, Qp = 0 for all polytopes P.
(ii) If K is in C%, then, by (3.2), ass(K) = n|K°| and thus we then also have

Qe = lim (;Ssi(g()))HP. (3.3)

(iii) As for all p# —n and for all linear, invertible transformations T, as,(T(K)) =
|det(T)|("=P)/ ("+Pag (K) (see [51]) and as,(T(K1),...,T(K,)) = |det(T)|"~P)/(+P)as,
(Ky,...,K,) [57], we get that

QT(K) = |det(T)|2”QK, (34)
and

Qr(ky),...r(k,) = 1det(T) " Q. . k-

In particular, Qg and Qg, . g, are invariant under linear transformations 7" with
|det(T")| = 1.
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COROLLARY 3.4. Let K be a convex body R™ with its centroid at the origin. Then
asp(KO) ) n(n+p)/p

Qx = lim | 22—~
K lm(nm

Proof. By Proposition 3.1(iv) and Remark (i) after it

n+p ) K° n+p
Qg = lim (aSP(K>> = lim (asn /p( )>
1 p—o0

p—oo \ n|K°] n|K°|
o n+n? o n+
iy (B EYT_ (asa B\ O
o\ ] o\ ol ] |
1/r

EXAMPLE. For 1 <r <oo, let B ={z eR": (31 |;]")" <1} and let B ={z €
R™ : maxi<i<n |2i| < 1}. Then a straightforward, but tedious calculation gives

Qg = exp(—(n*(r —2)/r)(I'((r = 1)/r)/T((r — %)/7“3 —I'(n(r —1)/r)/T(n(r —1)/1)))
v (r—1)nn—1

(3.5)
Indeed, it was shown in [51] that

2" (r — 1PV (D + rp — p) /r(n + p)"

B S T T )t )
Therefore,
as,(Br) _ | (T(n + vp— p)/r(n + p))" Tln(r — 1)/r)
Al(BEY| ~ (r = DG T(n(n + rp— p)Jr(n 4 p)) (0 — D)/0)7
and
— lim asp(Bf) S
o = iy, <n|<B:f>°|>

_exp(=(n*(r = 2)/r)(I"((r = 1)/r)/T((r — %)/7“3 —I'(n(r —1)/r)/T(n(r —1)/1)))
(r—1)nn=1

The next propositions describe more properties of (2. Some were already stated in Section 1.

PropoOSITION 3.5. Let K be a convex body with its centroid at the origin.

(i) For all p > 0,
O < (asp(Ko) ) n(n+p)/p .
n|K°|
If K is in addition in C?H then equality holds if and only if K is an ellipsoid.
(ii) For all p > 0,

asp(K) e
n|K°|
If K is in addition in C?H then equality holds if and only if K is an ellipsoid.

P < ol\n ) .. .. . C2 , q . .
11 i i e lla ve tllat SZK ]( -I( 11 li 1S 11 addlthII n + tlle]] e Uallt& JIOIdS 11 al]d
OH]& jf K jS an eHipSOid.

(iv) We have that QxQgo < 1. If K is in addition in C?, then equality holds if and only if
K is an ellipsoid.

QK<<
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Proof. (i) The first part follows from Corollary 3.4, Proposition 3.1(iii) and the Remark (ii)
after it. The second part follows from Corollary 3.4, Proposition 3.1(iii) and the Remark (iv)
after it.

(ii) The first part follows from the definition of Q, Proposition 3.1(ii) and the Remark (ii)
after it. The second part follows from the definition of Qx, Proposition 3.1(ii) and the Remark
(iv) after it.

(i) By (i), 2 < (aso(K)/nlK°[)" = (K/|K°])".

(iv) Condition (iv) is immediate from (iii). 0

We concentrate on describing the properties of Q. The analog properties for the invariant
Qk, ... K, also hold and are proved similarly using results about the mixed p-affine surface
areas proved in [57]. For instance, the analog to Proposition 3.5(ii) holds: For all p > 0

< aSP(K17"'7Kn) n+p.
asSoo (K1, ..., Ky)

This follows from a monotonicity behavior of (as,(Kj,..., K,)/ase(K1,. .., K,))" P, which
was shown in [57]. And the analog to Proposition 3.6(ii) holds:

1 Sy log[fre i )
do |.

Q =
KooK = OXD <aSOO(K1, LK) an H?Zl hk,

ProproSITION 3.6. Let K be a convex body R™ with its centroid at the origin.
(i)

) (x))

1
Qe = exp ( LKO (x, Nico (2)) log @ Nco ()71

| K|
In addition, if K is in 0_2'_, then

(i)

(iii)

% J6K<$,NK($)>log (x JGK((;E)WH dpg ()
< nlog K]
h K|
1 KJK(x) HK(.’E)
" K] LK (o, Nic@) 8 T, Nuc ()t #x )



Page 12 of 34 GRIGORIS PAOURIS AND ELISABETH M. WERNER

Proof. (i) By Corollary 3.4,

2
- as (KO) n(n+p)/p ) as (Ko) n*/p
logQy =1 1 P =1 1 P
08 i =108 (;fir%( n|K°| ) 81220\ K|

= lim —1 =
o p e n|Ke| p—0  asy(K°)
2 i P J o ()P (HP)
p—0 aSp(KO) OK° <I’7NK0 (x»n(pfl)/(ner)
x log roxce (&)

o Ve (it e ()

- II%I LKO (z, Ngo () log W dprco (2).

(ii) If K is in C%, then we have, by (3.3), that

log e = log ( iy (22489 )*) L log(as,(K) /s ()

p—oe \ 8Seo (K) p—oo (n+p)!
L () dp)(asy ()
pmee asy(K)
— . (n+p)? d P
‘pli“éowmf iy (o (st 55
(

— log ({(x, Ng (x

5

~ T (:s:(?) LK o, N (o >>)n:;njp/)<n+p) (g s e
- 7 o (@, N ) e 2)
= I 1 | e o e )
= T by T G T )
(iii) Combine Proposition 3.5(iii) with (i) and (i). O

Let (X, pu) be a measure space and let dP = pdu and d@Q = gdu be probability measures
on X that are absolutely continuous with respect to the measure p. The Kullback—Leibler
divergence or relative entropy from P to @ is defined as [13]

DiL(PIQ) = | plog” . (3.6)

The information inequality (also called Gibb’s inequality) [13] holds for the Kullback—Leibler
divergence: Let P and @ be as above. Then

DxL(P[|Q) =0, (3.7)

with equality if and only if P = Q.
The invariant Qg is related to relative entropies on K and a corresponding information
inequality holds, which is exactly the inequality of Proposition 3.5(iii).
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ProprosiTION 3.7. Let K be a convex body in R™ that is CJQF. Let

ki (2) ( ):M

(x, Nk (z))"n|K°|’ n|K]| (3.8)

p(x) =

Then dP = pduyx and dQ = qdpk are probability measures on OK that are absolutely
continuous with respect to ux and

Dy (P||Q) = log (||II((O|| Q}l/") (3.9)
and
K°| 1/
DkL(Q||P) = log <||K|QK£/ ) (3.10)

Moreover, the information inequality implies that

K\
<
e < (|K°|

with equality if and only if K is an ellipsoid.

Proof of Proposition 3.7. As

n|K|=LK<w,NK>duK<x> and 0l = | @) o),

ok (, Nk (z))"
Jor Pdpx = 55 adpx =1 and hence P and Q are probability measures that are absolutely
continuous with respect to ux on K.

Equation (3.9) or (3.10) follows from the definition of the relative entropy (3.6) and
Proposition 3.6(ii) or Proposition 3.6(i), respectively.

By (3.7), equality holds in the inequality of the proposition, if and only if, for all x € 0K,

KO
e (@) = LS = constant,

(&, Nic())n*t - |K]
which holds, by the above-mentioned theorem of Petty [46] if and only if K is an ellipsoid. [

Let K be a convex body in R™. Recall that the normalized cone measure cmg on OK is
defined as follows: For every measurable set A C K,

cmp (A [{ta:a e A,te[0,1]}] (3.11)

1
'K

For more information about cone measures we refer to, for example, [6, 16, 43].

The next proposition is well known. It shows that the measures P and () defined in
Proposition 3.7 are the cone measures of K and K°. We include the proof for completeness.
We see that Nx : 0K — S"7 1 2 — Ng(z) is the Gauss map.

ProprosiTION 3.8. Let K be a convex body in R™ that is Ci. Let P and @ be the
probability measures on 0K defined by (3.8). Then

P= Nl?lNKOCmKo and @ = cmg,
or, equivalently, for every measurable subset A in 0K

P(A) = empo(Ngi(Ng(A))) and Q(A) = cmg(A).
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Proof.
1

Q) = e

JA(x, Nk (x)) duk (z) = cmg (A).

Also

B kr(r)  dug(z) 1 1 ol
P = | NG i) n|K°|JNK(A> () 70

Let B C 9K°. Then

1 " T
= & {z ER™: ||z|lke <1, Tl € NKO(B)}‘.
Let A ={z e R": ||z||go <1, z/||z||2 € Nko(B)}. We have

A 1

= = — b r" Y A (r0) dr do (0
] il |, senarao

| Wolee
- 7|K°| JNKO(B) L " drdo(6)

1 J 1
= — —do(9).
A5 ) o @

Let B € OK° be such that Ngo(B) = Ng(A). This means that B = Ngl(Nk(A)). Then
P(A) = cmgo (Ngi(Ng(A))), which completes the proof. O

CIN o (B)

CIN o (B)

Therefore, with P and @ defined as in (3.8),
Dkr.(P||Q) = Dkr.(Ng Nglempeo|lempg), (3.12)

and we get as a corollary to Proposition 3.7 that the invariant {0k is the exponential of the
relative entropy of the cone measures of K and K°.

COROLLARY 3.9. Let K be a convex body in C%. Then

K = 1Ko exp (—DKL(NKNI;gchOH(jmK)).

Finally, an isoperimetric inequality holds for the affine invariant Q.

PROPOSITION 3.10. Let K be a convex body in C% of volume 1. Then
Qre < Qs /g

with equality if and only if K is a normalized ellipsoid.

Proof. The proof follows from the above information inequality for convex bodies together
with the Blaschke Santald inequality and the fact that Qg2 /g2 1/n)0 = [Bi|*™. O

4. Zy(K) for K in C%

In this section, we show how Q is related to the L, centroid bodies. The main theorem of
this section is Theorem 4.1. We assume there that K is symmetric, mainly because the bodies
Zy(K) are symmetric by definition. Also, throughout this section we assume that K is of
volume 1.
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THEOREM 4.1. Let K be a symmetric convex body in R™ of volume 1 that is in Ci. Then:

(i)

nin+1)
2

lim
p—oo logp

(125 (K)| = |K°]) =

P |Ko|§

. o 1) n(n+1 o
i p (1230001 |1 = " 10125000 )

— i p (1z500)] - 1) - 2D
= )o@ i ) () o)
2 Jgnn

logle"I)

_ ! K(z) o k() )
9 J@K <~T,N(aj)>n 1 g <2n+177n_1<I,N(x)>"+1> dﬂK( )

Thus, Theorem 4.1 shows that if K is a symmetric convex body in Ci of volume 1, then

: o o n(n+ 1) logp o
i p (12300601 - |1°] = "B 75 )

. o o n(n+1 o
= tim p (12500 = 157 = " oyl

1 Kr(x) o ki (x) .
2 LK @ N (2"+17T”1 %N(ﬂf»"“)duK( )

g @) [ mkle)
- ) TN G )

1 Kr(x) o Kr(x) .
3] TN <<x,N<m>>"+1>d“K( )

_ n+l_n—1 n|K°| _ K7 — _|KO| s
=log (2" 'm )72 3 log Qx = D) 10g2n(n+1)7rn(n—1)
or
lim p | Z5 (K))| 1_n(n—|—1)logp _q
p—00 |K°| 2p
s n(n+1)logp\ |Z;(K)| 1 Ok
~ (1= T )T e ()

So we have the following corollary.

COROLLARY 4.2. Let K and C' be symmetric convex bodies of volume 1 in Ci, Then:

(i)

lim 22 ((1 —n(n+1)logp/2p)|Z;(K)| 1>

p—oo N |K°|
. 2p |Z5 (K| B 1_n(n+1)10gp 2—110 Q}(/n
p—oo M |K°| 2p 2 %8 gnrign-1
o (n=1)/(n+1) B
= (n+1)log <K°> + Dki,(Ng Nyocmpgo||cmg );
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(i)

Zy (K o

p—00 2p |K°] |K|
The corresponding statement for lim, . p(|Z,(K)|/|K°| — (1 —n(n +1)logp/2p))
also holds.
(ii)
i (1 20 D) (01 IO Ly, 0
p—00 2p | K°] |Ce] 2n ° Qg

Proof. (i) follows from (4.1) and Corollary 3.9, (ii) follows from Proposition 3.5 and
(iii) follows from (4.1).

The remainder of the section is devoted to the proof of Theorem 4.1. We need several lemmas
and notation.

Let @,y > 0. Let T'(z) = [;"A*"'e ™ d\ be the Gamma function and B(z,y) = fé Azt
(1=X)¥"Ld\=T(z)I'(y)/T(z + y) be the Beta function.

We write f(p) = g(p) £ o(p) if there exists a function h(p) such that f(p) = g(p) + h(p)
and lim,_, ph(p) = 0, that is, h(p) has terms of order 1/p? and higher. Similarly, f(p) =
g(p) £ o(p?) if there exists a function h(p) such that f(p) = g(p) + h(p) and lim,_~, p*h(p) = 0,
that is, h(p) has terms of order 1/p® and higher. We write f(p) = g(p) & O(p) if there exists a
function h(p) such that f(p) = g(p) + h(p) and lim, . h(p) = 0. O

LeEMMA 4.3. (i) Let p > 0. Then

n/p
1 1 1
B p+1,nJr :l—mlogp+ﬁlog r nt
2 2p P 2

2 1 2 2 1 1
+ w(logp)z _ %log (I‘ (n;r >) log p

8p?

n(log (F (";1»)2— ni_l(n(n+1)+2(n+3))

L
2p?

+o(p”).

(ii) Let 0 < a < 1. Then

<J1 uP(1 —u) " D/2(1 = a(1 — w)) /2 du) n/p

0
1
n A
2p

n n+1 n?(n +1)? , ni(n+1) n+1
—1 I'(f—— ——F—(1 -1 rf——| |1
+ 0g< ( 5 >>+ 5 (logp) oz o8 5 ogp

+2% [n <log (r (“;1»)2_ (n+1)(n24+3n+6) (D) (T?) )

The proof of Lemma 4.3 is in the Appendix.

Let f:R; — R, be a C? log-concave function with LR+ f(t)dt < oo and let p > 1. Let
gp(t) = tPf(t) and let t, = t,(f) be the unique point such that g,(t,) = 0. We make use of the
following lemma due to Klartag [24] (Lemmas 4.3 and 4.5).

=1

+o(p”).
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LEMMA 4.4. Let f be as above. For every € € (0,1),

tp(1+¢)

ro PF(E) dt < (1+ Ce ) J 2 £ (¢) dt,
0

tp(1—e)

where C > 0 and ¢ > 0 are universal constants.
We think that the next lemma is well known. We give a proof for completeness.

LEMMA 4.5. Letu € S"~!. Let f and t, be as above and f be also such that it is decreasing
and a probability density on [0, h(u)]. Then
lim ¢, = h(u).

p—00

Proof. Since the support of f is [0, h(u)], by the definition of ¢, we have that ¢, < h(u) for
all p. So we only have to show that lim,_, t, > h(u).

By Holder’s inequality, (fg(u) tPf(t) dt)'/? — h(u). Thus, for € > 0 given, there exists p. such
that for all p > p.,

h(u)
| erar> tiw -2,

0

By Lemma 4.4, for all 0< 6 <1, [o°?f(t)dt < (1+ Cer") [}? (15 £ty dt. We choose

0=1 /pl/ 4 with p > p. and get, using the monotonicity behavior of tPf on the respective
intervals, that

tp(146)

(h(u) — &) < (1 + CeVP) Ut 2 F(8) dt + J 1(t) dt]

tp(1—0) tp
< (1+ Ce VP iy f(t, )0

As f is decreasing, f(t,) < f(0). Moreover, ¢, < h(u). Thus, for p > p. large enough,
(14 Ce=evP)p=4%, f(t,))'/P < 1+ ¢ and hence h(u) — & < (1 + €)t,. O

REMARK. We will apply Lemma 4.4 to the function f(t) = |K N (u + tu)|, u € S"~1. We
show below that f is C2. Thus, t, is well defined and Lemma 4.4 holds. Also, ¢, is an increasing
function of p and by Lemma 4.5, lim, o t) = hic ().

We also think that the following lemma is well known but we could not find a proof in the
literature. Therefore, we include a proof.

LEMMA 4.6. Let K be a convex body Ci. Let w € S"! and let H; be the hyperplane
orthogonal to u at distance t from the origin. Let f(t) = |K N Hy|. Then f is C?. In fact,

{u, NK( )
L)KmHt (1 — (u, Nk (x))2)1/2 dpoxnm, (v)

HOEE

and
ey ﬁ(xt)l/(n_l) - (n — 2)<NK($t)ﬂu>2 x
fo = me[(HNK(xt),uV)S/? o @0 a) (L — (Vo @), a2y | om0
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Proof. We assume that int(K) N Hy # (). To show that f € C?, we compute the derivatives
of f. We first show that

, u, N (z
f (t) T JaKnHt (1- équigxiiz)l/Q duoxns, (:c)

Indeed, for € 0K N H; let a(x) be the (smaller) angle formed by Ng(z) and w. Then
cosa(x) = (u, Ng(z)) and

1
)= hm (|Kﬂ Hiypol = |[K N H|) = — lim — (J e cot a(x) dMaKmHt(CU))
OKNH,

e—0 ¢
- JBKﬂHt (1 — (u, Ng(2))2)1/2 dpornm, ().

We show next that

fr() =

~ Klz)V/-D (n — 2)(Ng (1), u)? N
Lm,, {a — (Ni(ze), w2372 (N, (@), z)(1 — <NK<xt>,u>2>] dporoi (1)

By definition

") = — im1 <
f (t) - f;l—>0 e (J@KﬂHﬂrs ( <
(u, N ()

)

- JaKﬁHt (1= (u, N (2

u, Nk (Yeye))

U, N (ye40))2)1/2 dpornd, . (Yeve)

iz)l/Q dpornH, (l‘t)>

We project K N Hy,. onto K N H; and we want to integrate both expressions over 0K N H;.
To do so, we fix, after the projection, an interior point z¢ in K N Hyy.. For x; € 0K N Hy let
[0, 2¢] be the line segment from ¢ to z; and let x¢y. = OK N Hyyo N [0, x¢]. Now observe that

1 B -
dpoknm,.. = ( dpornm,,
HOROH e = TN (@0), Nk, (%42 HOKOH,

where Ngnm, (2¢) is the outer normal in x; to the boundary of the (n — 1)-dimensional convex
body K N H; and, similarly, Nxnm,, . (24+<) is the outer normal in 2. to the boundary of the
(n — 1)-dimensional convex body K N Hy..

Note further that

E(Nk (1), u) |||
(Ninm, (1), ) (1 — (Nic (1), u)2) /2

lze|| = ||Teqell = + higher order terms in e.

Therefore,

loesel N5 (4 e(Nic (), w)
(nxtn) ‘(l <Nm,,<xt>,wt><1—<NK<xt>,u>2>1/2>
(n = 2)e(Nic (1), u)

(Nrnm, (21), 24) (1 = (Ni (), u)?)1/?
+ higher order terms in ¢.

=1 -
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: EJ‘ |: <U7NK(yt+s)>
e=0¢ Jornm, | (Nrnm, (@), Neaa, . (Tee)) (L — (u, Ng (yege))?) /2
(1 =2
(Ninm, (@), 2e) (1 — (N (), u)?)1/?
N
_ _J L+ { (u, Nk (Y1)
— Joxnm, e=0 € [(Nrnm, (20), Neom,, (€042)) (1= (u, Nk (ye42))2) 1/
(1 e
(Ngnm, (@), 2e) (1 — (N (), u)?)1/2
(u, Nic (¢))

- (1 - <U,NK(;(;t)>2)l/2:| d:“ﬁKﬂHt(xt).

We can interchange integration and limit using Lebesgue’s theorem as the functions under the
integral are uniformly (in ¢) bounded by a constant.

Define g,(t) = (N (z4),u)/(1 — (u, Ng(2:))?)*/2. Then the expression under the integral
becomes

+ higher order terms in 5)

+ higher order terms in 6)

lim gy(t +e) (1 _ (n — 2)e(Ni (1), u)
e=0¢e [(Ninm, (2t), Nkna, . (Teie)) (Ngrm, (@), 2) (1 — (N (24), u)2)1/2

+ higher order terms in 5) — s (t)}

1 (n = 2)(Nk (1), 0)°
= ilﬂ%g[gy(t +e)—g.(t)] — <NKmHt($t)7$t>(1K_ (N (z¢),u)?)

Here we have also used that, as ¢ — 0, 24y — 21, Ninm,,. (Ti1e) = Nignm, (z¢) and
gy(t+€) = ga(0).

To compute lim._.o(1/¢€)[gy(t +€) — g ()], we approximate the boundary of 0K in z; by
an ellipsoid. This can be done as 0K is Ci by assumption (see Lemma 4.8). To simplify the
computations, we assume that the approximating ellipsoid is a Euclidean ball. The case of the
ellipsoid is treated similarly; the computations are just slightly more involved. As the expression
under the integral depends only on the angles between the vectors involved, we can put the
origin so that the approximating Euclidean ball is centered at 0. Let r = n(xt)’l/("’l) be its
radius. Then

li 1 ¢ ] = 1 B k() /(=D
lim g[gy( +e) — g:(t)] = r(1— (Ng (), u)2)3/2 (1 — (Ng(20),u)2)3/2

Altogether

"oy ’i(xt)l/(n_l) _ (n — 2)<NK(xt)ﬂu>2
Fe) = me [(1 Vi @), 232~ Waenm, (@), ) (1L — (Nic(w2), 0)?)

} dlﬁaKmHt (xt)
|

LEMMA 4.7. Let K be a symmetric convex body of volume 1 in C7.
(i) The functions

P 1 B th(K) (u)”
log(p) hz, (k) (w)" (1 e (u)™ >

are uniformly (in p) bounded by a function that is integrable on S™~*.
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(ii) The functions

p (1 _hzu0@)"  n(n+1) log(p) thuo(u)")
haz, ) (w)" hc (u)™ 2 p hi(uw)?

are uniformly (in p) bounded by a function that is integrable on S™~1.

Proof. (i) Let ue S"'. Let « € 0K be such that Nk (z) =u. As K is in C?, by the
Blaschke rolling theorem (see [48]), there exists a ball with radius ro that rolls freely in K: for
all x € 0K, By (x —roN(x),r9) C K. As K is symmetric,

hre () n/p
hz,(u)" = (2 L Py € K : (u,y) =t} dt)

hi(u)—r

he (w) - (n—1)/2 n/p
_ 2n/p|Bg—1|n/p <J P <2T0(hK(U) _ t) |:]_ _ hK(u)t:|> dt) .

e () n/p
> <2J tP{y € By (xz — rou,mo) : <U7y>=t}dt>

hK(u)f’l‘o 2r0
The equality holds as the (n — 1)-dimensional Euclidean ball
By (x —rou,mo) N {y € R" : (u,y) =t}

has radius (2r¢(h(u) —t)[1 — (hg(u) — t)/2r0])*/2. Now, where, to abbreviate, we write h,
hz,(x), instead of hx (u), hz,(x)(u), and where we use that 1 <1 (hg(u) —t)/2r9,

hi £\ (12 n/p
bz, (w)" > 2B a0 ([ (1_h ) dat
hik—ro K

n/p

1

= W (2| By~ nSE 2l 2yl J wP(l—w) "D 2qw | . (4.2)
1—T‘0/h}(

As K is symmetric, ro < hy(u). If 7o = hi(u), then

n

1 n/p
D 5 ey ([ e - )R aw)
K 0

If 79 < hg(u), then we apply Lemma 4.4 to the function f(w) = (1 —w)™ /2, We choose
e so small and pg so large that e + (1 +¢)(n —1)/2pg < 79/hx. Then Lemma 4.4 holds and
we get, for all p > pg,

h 1
ZPTEK) > (2T6n71)/2h$+1)/2|33_1Dn/p J
hK 1—ro/hK

(n=1)/2, (n+1)/2) pn—1;\ /P , 1 n/p
N (27"0 hy | By |> (J wp(l_,w)(nl)/de>

n/p
wP(1 — w)(=1/2 dw)

1+ Ceere’ 0
_ n/ .
B 27”8” 1)/2h%+1)/2|Bg_1| p 5 o n+1 v/p
- 1+ Cepe? PTay '

(2§ D202 pretyn/e — g %log[QTé"_l)/Qh%H)/Q|B§“1|] + o(p),
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respectively,

n—1)/2, (n+1)/2, pn—1,\ /P n—1)/2, (n+1)/2, pn—
27,.6 )/ h(K+ )/ |B2 1| . ﬁ log 2,',,6 )/ h;{+ )/ |B2 1|
14 Ce—cpe? 1+ Ce—cpe?

+ o(p)

we get, together with Lemma 4.3(i),

hn 1 1
0 5 1= M o Zog 2l 2 e (252 )] ot0)
e p
N(n‘i'l) n— —11n
SR L glog[ﬁlro T ) £ o(p), (4:3)
respectively,
hTZL 1 9 (nfl)/Zh(nJrl)/Q BrUr 1)/2
P(K)>1_Ml ﬁl "o K | 2 | <(n+ )/) + 4.4
2 ogp+log 1T Coore? olp) (4.4)
n(n + 1) n 47‘”717Tn_1hn+1

Now note that there is o > 0 such that
1
By (0,a0) C K C BY (0, ) .
«

This implies that, for all u € S"~!, a < hx < 1/a. Moreover, we can choose a so small that
we have, for all p > pg > 1,

1
B3 (0,a) C Z,(K) C K C By <0, a) ,
which implies that, for all u € S"~1, for all p > po,

1
a< hz, k) < -

On the one hand, as Z,(K) C K,

p ( hz <K> )>0.
log(p) hz,x)(u
nd

On the other hand, we get, by (4.3), (4. )

(4 6) with a constant c,

D 1 ( hz, ) (u)" > cn < 1 “Lpn—lpn)
<— (n+1- log (4r} h'y
log(p) hz,(x)(u)" hK( " an log p (475
cn < 1
< =
an log po

47"” 1 = 1
s (o))
respectively,
1 h u)” 1 S
p (1_ Zp<K)()><cn<n+1_ log(ro >
log(p) hz,(rc)(w)" B (u)™ ar log p (14 Cemer?

(e 1) )
log

The right-hand side is a constant and hence integrable.

(ii) As K is in C%, there is R > ro > 0 such that, for all z € 9K, K C By (z — RN(z), R).
Then we show similarly to (4.2) that

)

cn
<<n+1+

an

log po

1 n/p
haz, ()" < Wi (20702 By~ hig V2RO 2y (J w?(1—w) =D/ dw> :
0
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and thus, similar to (4.3),

Wg,00 __nnt1)

n
< 1 1 2n+1Rn71 nflhn—l + )
m ogp + 5 log| T hi £ o(p)

Hence, together with (4.3), respectively, (4.4)

log[2" T R 1" LR £ O(p)

<—P (1 _hz, a0 n(n+1) log(p) th(K)(U)”)
= haz,a0(W)" huc (u)” 2 TR
< g loglry ' x"  £ O(p),
2hz, (k)"
respectively,

- log[2n+1Rnfl7rn71hrlL(—1] £ O(p)
2h/Zp(K)n
<—Pr (1 _hz,a0@"  n(n+1) log(p) th(K)(U)">
0 (@) hic(u) 2 TOR

n 1 [4rgl7r"_1h7}<+1

(1+ Coers?)? } =00).

< —
= 2th(K)n
Hence, using (4.6), we get, with an absolute constant ¢ for all p > py,

p (1 ~hz,u0 @)™ n(n 1) log(p) th<K>(u)">’

th(K)(u)” hK(u)” 2 D hK(U)n
cn 2n+1Rn71ﬂ_n71
< — log — = ||
am an—

Again, the right-hand side is a constant and therefore integrable.

O

As K € Cf_, the indicatrix of Dupin at every = € 0K is an ellipsoid. Since the quantities
considered in Theorem 4.1 are affine invariant, we can assume that the indicatrix is a Euclidean

ball. We have (see [49]) the following lemma.

LeEMMA 4.8. Let K CR™ be a convex body in Cf_. We assume that the indicatrix of
Dupin at x € 0K is a Euclidean ball. Let r = r(z) = x(z) """~ and put u = Ng(z). Let
B(z — ru,r) be the Euclidean ball with center at x — ru and radius r. Then, for every € > 0,

there exists A, > 0 such that, for all A < A,

B(x—(1—¢)ru, (1 —e)r)NH(x — Au,u)”

CKNH(z—Au,u)” CBlx— (1 +e)ru,(1+¢e)r) N H(z — Au,u)”.

Here H(x — Au,u) is the hyperplane with normal u through = — Au and H(z — Au,u)”

is the half space determined by this hyperplane into which u points.

Proof of Theorem 4.1. (i)

) o1 1 1
|12, (K)| = |K°| = gLnil (h}p(K)(“) - h%(u)) do(u).
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Hence,

D o S S J 1 hy, o) ()
lim Z>(K))| —|K°]) = — lim —— |1 - —2——— | do(u
p— logp(|( » (B = K7 n p—oc logp Jgn1 h%p(K)(u) ( R () ()

1 1 Ry, ) (v
== J lim —2 - 1-— ZPTEK) ) do(u),
n Jgn-1p—o0 logp th(K)(u) h ()

where we have used Lemma 4.7(i) and Lebesgue’s theorem to interchange integration and
limit. Let u € S*~'. Let € 9K be such that Ng(z) =u. As K is in C%, k = ki (x) > 0 and
we can assume that the indicatrix of Dupin at x is a Euclidean ball with radius r = r(z) =
r(z) =Y/ (=1,

W0 = (| luiray) " (2 jhm) Pl € K - (uy) =1} dt) "

0

hK(u) n/P
> 2j Py € K : (uy) = t}|dt

(1=e)(hx (u)=Ac)

(1—e)(hk (w)—Ac)

hK(u) ”/P
> <2J t!{y € Bz — (1 —e)ru, (1 —e)r) : (u,y) t}|dt> ,

where we have applied Lemma 4.8. In addition, we also choose A, of Lemma 4.8 so that
A, < min{e, (1 —e)r}.

Bx—(1—¢)ru, (1 —e)r)N{y € R": (u,y) =t} is an (n — 1)-dimensional Euclidean ball
with radius

hie(u) — t]>1/27

(20— it - [1 - 2

which, by choice of A., is larger than or equal to

(hi(u) + 1 e)D”Q'

(2(1 — ) () — 1) [1 . 20—

Hence,

3,000 = ([ twara)”

2|ByH12(1 — €)rhg (u)) "=/ n/p
- ([1 - 6(hzx(u) +1-¢)/2(1~ 6)7’](”—1)/2>

b (u) " (n—1)/2 n/p
X J P <1 - ) dt
(=) (hi (w)—A.) hi (u)

(1B = &)r) V2[R ()] (/2 "/Ph .
- ([1 —elhg(u)+1—¢)/2(1 — g)r](n—l)/2> e (u)

1 n/p
X (J WP (1 —v)(n=D/2 dv) .
(1—e)(1-Ac /b (u))

Now we apply Lemma 4.4 to the function f(v) = (1 —v)®~D/2. We see that f is C? and
vp, =1/(1+ (n —1)/2p). Thus, Lemma 4.4 holds. We see that v, of Lemma 4.4 is an increasing
function of p and lim,_. v, = 1. Hence, for € > 0 given, there exists p. = pe a_, namely, p. >
(n—1)(hg(u) — Ac)/2A., such that, for all p > p., v, > (hx(u) — Ac)/hk(u). In addition, we
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also choose p. so large that p. > 1/¢®. Thus,

AN ( 1By (L = £)r) "D/ 22h ()] D2 >n/p
Wi (u) TN+ Ce/o)[1 —e(hg(u) +1—¢)/2(1 — &)r](n=1)/2

1 n/p
X (J vP(1 — o) 1)/2dv) .
0
Now

LA Ol
((1 + Ce*c/f)[l —elhg(u) +1—¢)/2(1 —g)r]n— 1)/2)

_ By (1 = &)r)- W[zh )+
=ty log ((1 + Ce*gc/e)[l —e(hg(u) +1— 5)/2( B) ]<n1>/2>
L(n By 1(1 = £)r) " D/22hc (w)) D/ S
+§ <1 <(1+C@_C/E)[1—E(hK(u)+1—5)/2(1—g)r](n—l)/2>) +o(p7).  (47)

Together with Lemma 4.3(ii) (for a = 0), we then get the following: For € > 0 given, there
exists p. such that for all p > p.

h7 U
Z,,(K)( ) . n(n+1)

R(u) 7~ 2p logp
n a1 = e)r) " H2h g (u)] L
+ % log ((1 + Ce=¢/e)2[1 —e(hg(u) +1—¢)/2(1 — 5)r]"1>
n?(n + 1) 5, ni(n+1
+ (Spp(logp) - (2];)
w11 = ) 2 ()]
xlog ((1 + Ce=c/e)2[1 —e(hg(u) +1—¢)/2(1 — E)T]”_l) logp
n(n+1) [(n?+ 3n + 6)
2p? [ 4 }
n? n+1 2
| (5 (5))
+ 2log ( Wn;l((l — &))" 2hi (w)]" )]
(1+Ce=¢/=) " [1 —e(hg(u) +1—¢)/2(1 —g)r]"—1
n? By (1 = &)r) /2 [2h e (w)] D/ 1,
T o Klog ((1 T+ Ce )1 —e(hr (W) + 1—2)/2(1 — )] D72 )) ] +olp).
(4.8)
Thus,
p ("0
log p hi ()
nn+1) n o (1 = e)r)"H2h g (u)] L o
s 2 210%271 g((1+Ce—c/5)2[1—5(hK(u)+1—5)/2(1—5)7"]"‘1) +ole)
(4.9)

On the other hand, by Lemma 4.6, the function f(¢) = |K N (ul + tu)| satisfies the
assumptions of Lemma 4.4 and ¢, is well defined. Also, ¢, is an increasing function of p and, by
Lemma 4.5, lim, o tp = hi(u). Hence, for € > 0 given, there exists p. = p. a_ such that, for
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all p>pe, tp, = h — A.. In addition, we also choose p. so large so that p. > 1/e3. Thus,

hK(u) ”/P
2j mwemem:ﬂﬁ>
0

h (u)
2(1 + C’e_“Q”)J

tp(l—e)

n/p
t"H{y € K : (u,y) =t} dt)

< <
g (
(1—e)(hk (u)—AL)

< |20 +Ce*c/€)J tP

K (u)
h%p(K)(U) =
(
n/p
2(1+Cefc/€)J' Py € K : (u,y) =t}dt>
< (2

(1—e)(hk(u)—AL)
x [{y € B(x — (1 +&)ru, (1L +&)r) : (u,y) = t}|dt)"/”.

In the last inequality, we have used Lemma 4.8. The latter is

hK(u) ”/P
< <2(1 + Ce™¢/%) L tP!|{y € Bz — (1 +&)ru, (1 +&)r) : (u,y) = t}| dt) .

As above, we note that B(z — (1+¢e)ru,(1+e)r)N{y € R": (u,y) =t} is a (n—1)-
dimensional Euclidean ball with radius

@u+wwaw—w@—§?ﬂybua

which is smaller than or equal to
(1 + e)r(hxc (u) — )12

We continue similarly to above and get that there exists (a new) p. (chosen larger than the
ones previously chosen and larger than 1/¢%) such that, for all p > p.,

h" u n—1 n—1 n+1
20 3 MO g 2o (T AR
K €
R+ 1?0 om0+ ) 2R (W)
+ T(logp) o log (% Ceel)—2 logp

(n+ 1) [(n2+3n+6)}

(log( (nﬂ))) mog(ﬂ"-l<<1gj>2:‘;§hf;<“””“)]
(=

e S S

Thus,

nin+1) n a1+ e)r)" 2k g (u)]" T
> - log < (15 Coele)-2 ) + o(p). (4.11)
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We see that (4.9) and (4.11) give that

. p h%p(K) (u) _n(n+1)
lim — <1 — o ()7 = 5 .

Hence, also using that, since |K| =1, hz (k) (u) — hx(u),

h" u
12380~ 1K) = [ i L (1— AL )>da(u)

n—1 p—oo logp hY}, (K)( u)

h”, U
:EJ lim — ! lim 2 [1- Z’;EK)() do(u)
n Jgn-1 p—o0 th(K)( )p%oo logp R (u)
n+1 1
= d
2 Ln_l h(u) o (u)

nn+1),
:T|K [

lim
p—00 logp

This completes (i).
(i)

o oy n(n+1)logp
|Zy(K)| = |K°| = ————~

1 J' 1 1 n(n+1)log(p) 1
—— — — do(u
n Jgn-1 <h%p(K)(u) R (u) 2 p  hi(u ()
z

)
lj 1 - hg, a0 n(n+1)log(p) M7
Sn—1 h ( )( )

Hence,
Tim p (Z;<K>| K7 -

_ EJ R <1 - Wy, k) (u) ~ n(n+1)log(p) Wy, x) (U)> do(u),
S

n-1p—o0 hly (K)( ) W (u) 2 p W (u)

where we have used Lemma 4.7(ii) and Lebesgue’s theorem to interchange integration and
limit. By (4.8) we have, for all p > p.,
)(u)
)
1

(1 a0 n(n+1) log(p) M,k
(u
n— [ZhK(U)]n'H )

(
W (w) 2 p o D (u
< —Elo ( ( )
Sy (1 +Ce~ c/5)2[1 e(hg(u) +1—¢)/2(1 —e)rjn—1
(

(L—e)r
B e e i) o (222)) )
e )

n? B3 (1= £)r) D22y (w)] 2
T [(l‘)g (Trcmi 1= sy =)

2

+o(p?).
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Thus,
L a0 n(n+ 1) log(p) P2, 0 ()
3 e () 2 p M
n (L= e)r)" 2R ()]
< —QIOg((l—f—Ce c/€)2 [l—e(h;((u 1—¢)/2(1 —e)rjn— 1)
n?(n+1)>2 (n? +3n—|—6 n? n+1 2
g w2 [0 (1752

7rn71((1 _ g)r)nfl [QhK(u)}"'H
+ 2log ((1 + Ce=c/e)2[1 —e(hg(u) +1—¢)/2(1 — g)ﬂn—l)]

n? IBEY((1 = &)r)(n=D/2[2h g (u)] (+1D)/2
~ % [(log ((1 + Ce=¢/9)[1 —e(hg(u) + 1 —e)/2(1 — E)r](n—l)/z)>
Similarly, using (4.10), we get, for all p > p.,
1_ h%p(K)( ) n(n+ 1) log(p) I W (K) ( )
b h”K(u) 2 P h"( )

o (E () T 2h @] n2(n o+ 1)?
n(n + 1) [<n2+3n+6>}

2p 4

(o ( (52))) " e (Z )

” l(log ('BS—H(U + 5)7”)(n_1)/2[2h;((u)}("+1)/2))2

2

+o(p). (4.12)

(logp)?

2

2p

2p (1+ Ce—c/e)—1 +o(p). (4.13)

We see that (4.12) and (4.13) give that

Wy )@ n(n+ 1) log(p) Mz, k) (W)
, (K n(n + 1) log(p) "z,x) Ml nt1
1 1— - -1 2h . O
Jim p ( ) 5 p b 5 log(m" " [2hue (w)]")

The limit lim, . p(|Z; (K)| — |K°| — (n(n + 1)/2p)log p|Z, (K)|) is computed similarly.

5. Applications

The fact that Qg can be expressed in different ways allows us to compute the integral in the
next proposition. This integral is the relative entropy of the (not normalized) cone measures
of the [-unit ball and its polar.

PROPOSITION 5.1. Let 1 <r < oo and let B" be the I"-unit ball and let (B"~*)* be the
set of all vectors in B*~! having non-negative coordinates. Then

n

n—1
[, T - T

0 @) [a=2) (P00 e -0y
= r(n(r—l)/r)[ ; (r«r—l)/r) r(n(r—l)/r))“ 1”4'

—1
Ty, d:z:l “e d.’l?nfl
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Proof. In Chapter 3, it was shown that
n K (x) K (x)
lo d x).
e R o TN % T T )
We apply this formula to K = B)', 1 < r < oco. It was also shown in Chapter 3 that
n(ir—2) (T'((r—1)/r) T/(n(r—1)/r)
logQpn = — — —1)1 .
oatin: = —n [ M (TG - Ty ) + (Ve
The curvature at a boundary point of B is (see [51])

o) = D L
(Z?:l |xi|2r72)(n+1)/2 ’

log Qp = —

and the normal is (see [51])

(sgn(zy)|z: """, ... sgn(an)|za| ")
o, [zir2)172

Thus, we get, where Bl is the polar of BJ’, that is, »’ is the conjugate exponent of r,

n(r—2) (I'((r=1)/r)  T'(n(r—1)/r) - 1 logr
"{ ; (r«r—l)/r) F(n(r—l)/r)>+( 1”4'3”

(G e o T 2
= 0 = log |(r—1)" lz:|" "% | dpopr ().
JaBg (i laif>r=2)1/2 };[1 '

Now we integrate with respect to the variables x1, ..., z,_1. The volume of a surface element in
the plane of the first n — 1 coordinates equals the volume of the corresponding surface element
on OB) times

NaB;L (Cﬂ) =

‘xn|T_1
(Z?zl |xi|2r72)1/2'
Thus, with (B?~1)* being the set of all vectors in B"~! having non-negative coordinates,

2"(r—=1)"" IJ H|wz7" 2log[ —-1)"" 1H|$1|r 21 w7 dry .. de,
)Jrz 1

(Bn 1

2 -1 Hw 21og[ —1 IHW ] a7 der . deay
(B

__o9n n—1 1 (F((’I’ B 1) T))
=2"(r=1) r»=1 T(n(r—1)/r)
" {n(r —2) (F’((r —1)/r) I'(n(r—1)/7)

r I((r—1)/r) T(n(r—1)/r)

where we have also used that

[{ens Nopy (2))| =

>+(n—1)1ogr} ,

2'(r = 17! (Ot = /)"
nrn—1 C(n(r—1)/r) "

There are still other ways how Qx can be expressed. Similarly to Theorem 4.1, Qg appears
in the asymptotic behavior of the volume of certain surface bodies and illumination surface
bodies [57]. We show the result for the surface bodies. For the illumination surface bodies it
is done similarly. |

1Bf| =

The surface bodies, a variant of floating bodies, were introduced in [50, 51] as follows.
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DEFINITION 5.2. Let s >0 and f: 0K — R be a non-negative, integrable function. The
surface body K s is the intersection of all the closed half-spaces H whose defining hyperplanes
H cut off a set of fug-measure less than or equal to s from 0K. More precisely,

Kfq= N HT.

Joran— fdur<s

PROPOSITION 5.3. Let K be a symmetric convex body in R™ that is in C3. Then

LIESL A 6 (@) oty !
T TG oy Ny 8 My ) ) = Ko g

where Ky  is the surface body of K for the function

_ {z, N (z))"n=1/2 . ~(n-1)/2
f= r(n—2)/2 <10g <<:c, NK(x)>”+1>> )

and where d,, = 2(| By~ )%/ (=1,

Proof. The proof follows immediately from the following formula which was proved in
[61, Theorem 14]:

K—KS 1/(n—1)
Kl [ .
7]

s—0 g2/(n—=1)

Appendix. Calculations with I'-functions
For z,y>0, I'(z):= [ A*"'e*d\ is the Gamma function and B(z,y):= fé Azt
(1 —=X)¥"Ld\ =T (2)I'(y)/T(z + y) is the Beta function.
Recall that we write f(p) = g(p) £ o(p), if there exists a function h(p) such that f(p) =

g(p) + h(p) and lim,, .~ ph(p) = 0 and, similarly, f(p) = g(p) £ o(p?), if there exists a function

h(p) such that f(p) = g(p) + h(p) and lim,_, p*h(p) = 0.
We shall frequently use the following: For x — oo,

1 1
[(z) = V2ra® 2e |1+ — + —— 4+ o(2?)] . Al
(=) A A T e (A1)

For every z,w > 0,

2
SAp— 14 log 2 + (log z) + o(p?)

2p?
and
2 1 2
0+ 227 =1+ logp+ LUBA | L2y o)
p 2p
Note that if f(p)? = o(p), then (1 + f(p))(1 — f(p)) = 1 & o(p), which means that
1
———— =1— f(p) £ o(p).
570 (p) £ o(p)
Also
a a ab
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Proof of Lemma 4.3. (i) We use (A.1) and get

n/p
(2 (r1257))

_ F(p+1) n+1\\"”
- (F(p+1+ CESOR ( 2 ))
D((n 4 1)/2)etD/2(p 4 1)p+1/2 n/p

[141/12(p + 1) + 1/288(p + 1) £ o(p?)]

(p+1+(n+1)/2PHH72[1 4+ 1/12(p+ 14 (n +1)/2)
+1/283(p+ 1+ (n+1)/2)? £ o(p?)]

_ ( (n—l—l) (ns1)/2 )n/p( p+1 )(n/p)(p+1/2)
p+1+(n+1)/2
>n(n+1)/2p

X

1+1/12(p+1) +1/288(p + 1)* £ o(p?) )n/p
1+1/12(p+ 1+ (n+1)/2) + 1/288(p + L+ (n + 1)/2)2 £0(p?) )

r
(p+l+ (n+1)/2
dt

Note that

14+ 1/12(p + 1) + 1/288(p + 1) £ o(p?)

n/p
<1+1/12(p+1+(n+1)/2)+1/288(P+1+(n+1)/2)2:|:0(p2)> =1+ o(p).

Also

1 n/p 1 1
(1) 2 g nt Lo (T n+
2 p| 2 2

n? [n+1 n+1 2 9

+2pz[ 5 +log<F< 5 )>:| :EO(p),

1 n(1+1/2p) 1 n
< ) = ( ) e~ (n/2p) log(1+(n+1)/(2p+2))
L+ (n+1)/2(p+1) 1+ (n+1)/2(p+1)
_y_nmntD)  n@45ntdn?tnl) oo
2p 8p2
and
1 n(n+1)/2p
( ) — ¢~ (n(n+1)/2p)log(p+(n+3)/2)
p+1+(n+1)/2

n(n+1)(n+ 3)

2 1 2
n(n+1) log p + n?(n+1) o

—1— 1 2 + o(p?).
% 57 (logp) o(p”)
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Hence,

(B <p+1, ”;1>)W = (1+0(p?))
SCHERTIUC )]
s[5t e (r (5] = e0m)

" 212 n(n+1)  n(3+5n+3n+n?) io(p2)>
x (11—
9

+ 5
o n%(n+1)>2

apr (s p)?

2p
n(n+1
G SN
2p

n +1)(n+3)i0(p2)

)
log p + glog (1“ (n + 1>> + M(logp)2
- e (")
a2 (o (r (57)

n+1
4

nin+1)

+o(p”).

(n(n+1)+2(n+3))

[

(ii
(f WP(1—w)m=D/2(1 = (1 — u))(n=1/2 du) n/p

)

1 n—1 n—1
= Jup( u)(nh/2 2 Ja(l—u)+ 2 |a*(1—u)?+£...
0 1 2
n/p n—1
—<B<p+1,n+1>> ll—( 2 )aB;;
2 1
n—1 n—1 n/p
+< 2 )aB5—< 2 ) a*Br + ...
2
+1 n—1 n—1
:(B( )) exp log 1—( "2 |aBs+ | 2 |a’Bs+
2 1 2
- (o (rer )"
2
" n—1 n—1 1 n—1\\?2
x |1—— 2 |aBs—| 2 |a®Bs+ > 2 a?B3+... ...,
p 1 2 2 1

where, for 3 < k < n — 2 and for a constant c,
Bp+1,(n+k)/2) TI(n+k)/2) 1 ¢

= 1+ -+ .
Blp+1,(n+1)/2) ~ T((n+1)/2) p-0 \' Ty =o)

n/p
du)

By =
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Hence, together with (i),

1 n/p
_ 1
(J uP(1 — u)(n—l)/2 (1—a(l- u))(n /2 du) —1— % log p
0 p

+Zlog< (”“))Jr ”“) (1ogp)2—W1og<r<”;1)>1ogp
n—1
n<log<I‘( ;1))) _(n+1)(n24+3n+6)_2 % am
n<10g<r(n—2|—1>>>2_(n+1)(n24+3n+6)_(n+1) %‘1 .

+ o(p?). O
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