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Relative entropy of cone measures and Lp centroid bodies

Grigoris Paouris and Elisabeth M. Werner

Abstract

Let K be a convex body in R
n. We introduce a new affine invariant, which we call ΩK , that can

be found in three different ways:
(a) as a limit of normalized Lp-affine surface areas;
(b) as the relative entropy of the cone measure of K and the cone measure of K◦;
(c) as the limit of the volume difference of K and Lp-centroid bodies.

We investigate properties of ΩK and of related new invariant quantities. In particular, we show
new affine isoperimetric inequalities and we show an ‘information inequality’ for convex bodies.

1. Introduction

An important affine invariant quantity in convex geometric analysis is the Lp-affine surface
area, which, for a convex body K in R

n and −∞ � p � ∞, p �= −n, is defined by

asp(K) =
∫
∂K

κK(x)p/(n+p)

〈x,NK(x)〉n(p−1)/(n+p)
dμK(x). (1.1)

We see that κ(x) = κK(x) is the generalized Gaussian curvature at the boundary point x of
K, NK(x) is the outer unit normal vector at x to ∂K, the boundary of K and μ = μK is the
surface area measure on the boundary ∂K.

We denote by |K| the n-dimensional volume of the convex body K and by K◦ = {y ∈ R
n :

〈x, y〉 � 1} the polar body of K. We use the Lp-affine surface area to introduce a new affine
invariant ΩK as a limit of normalized Lp-affine surface areas:

ΩK = lim
p→∞

(
asp(K)
n|K◦|

)n+p

. (1.2)

This is a first way how ΩK appears.
The second way how ΩK appears is as the exponential of the relative entropy or Kullback–

Leibler divergence DKL of the cone measures cmK and cmK◦ of a convex body K and its polar
body K◦:

Ω1/n
K =

|K◦|
|K| exp (−DKL(NKN−1

K◦cm∂K◦‖cm∂K)). (1.3)

Here N−1
K is the inverse of the Gauss map. We refer to Section 3 for its definition and that of

the relative entropy and the cone measures.
For a convex body K in R

n of volume 1 and 1 � p � ∞, the Lp centroid body Zp(K) is this
convex body that has support function

hZp(K)(θ) =
(∫

K

|〈x, θ〉|p dx

)1/p

. (1.4)
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The study of the asymptotic behavior of the volume of Lp centroid bodies as p tends to infinity
resulted in the discovery that, for a symmetric convex body K of volume 1,

lim
p→∞

2p

n

(
(1 − n(n + 1) log p/2p)|Z◦

p (K)|
|K◦| − 1

)
= −1

2
log

Ω1/n
K

2n+1πn−1
. (1.5)

This is the third way how ΩK appears.
Thus, the invariant ΩK introduces a novel idea (relative entropy) into the theory of convex

bodies and links concepts from classical convex geometry, like Lp centroid bodies and Lp-affine
surface area, with concepts from information theory. Such links have already been established.
Guleryuz, Lutwak, Yang and Zhang [18, 35–38]) use Lp Brunn–Minkowski theory to develop
certain entropy inequalities. Also, classical Brunn–Minkowski theory is related to information
theoretic concepts (see, for example, [3, 4, 13, 14]).

An important affine invariant quantity in convex geometric analysis is the affine surface area,
which, for a convex body K ∈ R

n, is defined as

as1(K) =
∫
∂K

κ1/(n+1)(x) dμ(x). (1.6)

Originally, a basic affine invariant from the field of affine differential geometry, it has recently
attracted increased attention (for example, [5, 32, 40, 49, 56]). It is fundamental in the theory
of valuations (see, for example, [1, 2, 22, 29]), in approximation of convex bodies by polytopes
(for example, [17, 30, 50]) and it is the subject of the affine Plateau problem solved in R

3 by
Trudinger and Wang [54, 55].

The definition (1.6), at least for convex bodies in R
2 and R

3 with sufficiently smooth
boundary, goes back to Blaschke [8] and was extended to arbitrary convex bodies by, for
example, [27, 32, 40, 49]. Schütt and Werner showed in [49] that the affine surface area
equals

as1(K) = lim
δ→0

cn
|K| − |Kδ|
δ2/(n+1)

,

where cn is a constant depending only on n and Kδ is the convex floating body of K (see [49]):
the intersection of all half-spaces H+ whose defining hyperplanes H cut off a set of volume δ
from K.

It was shown by Milman and Pajor [42] that if K is a symmetric convex body, then, for large
δ, the floating body Kδ is always uniformly, up to a factor c(δ) depending on δ, isomorphic to
the dual of the Binet ellipsoid from classical mechanics and consequently K◦

δ is isomorphic (up
to a factor c(δ)) to the Binet ellipsoid.

Lutwak and Zhang [39] generalized the notion of Binet ellipsoid and introduced the Lp

centroid bodies defined by their support function hZp(K) as given in (1.4).
Note that in [39] a different notation and normalization was used for the centroid body.

In the present paper, we follow the notation and normalization that appeared in [45].
The results of this paper deal mostly with centrally symmetric convex bodies K. Symmetry

is assumed mainly because the Lp centroid bodies are symmetric by definition (1.4) and used
to approximate the convex bodies K. There exists a non-symmetric definition of Lp centroid
bodies in [28] (see also [19]). Using this definition, we feel the results of the paper can be
carried over to non-symmetric convex bodies.

In Theorem 2.2, we generalize the result by Milman and Pajor mentioned above and show
that the floating body Kδ is, up to a universal constant, homothetic to the centroid body
Zlog(1/δ)

(K).
The Lp-affine surface area, an extension of affine surface area, was introduced by Lutwak

in the ground-breaking paper [33] for p > 1, and by Schütt and Werner [51] for general p.
It is now at the core of the rapidly developing Lp Brunn–Minkowski theory. Contributions
here include new interpretations of Lp-affine surface areas [41, 50, 51, 56, 57], the study of
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solutions of non-trivial ordinary and partial differential equations (see, for example, Chen [11],
Chou and Wang [12], Stancu [52, 53]), the study of the Lp Christoffel–Minkowski problem by
Hu, Ma and Shen [20], characterization theorems by Ludwig and Reitzner [29] and the study
of Lp-affine isoperimetric inequalities by Lutwak [33] and Werner and Ye [56, 57].

From now on we shall always assume that the centroid of a convex body K in R
n is at the

origin. We write K ∈ C2
+, if K has C2 boundary with everywhere strictly positive Gaussian

curvature κK . For real p �= −n we define the Lp-affine surface area asp(K) of K as in [33]
(p > 1) and [51] (p < 1, p �= −n) as in (1.1) by

asp(K) =
∫
∂K

κK(x)p/(n+p)

〈x,NK(x)〉n(p−1)/(n+p)
dμK(x)

and

as±∞(K) =
∫
∂K

κK(x)
〈x,NK(x)〉n dμK(x), (1.7)

provided the integrals exist. In particular, for p = 0,

as0(K) =
∫
∂K

〈x,NK(x)〉 dμK(x) = n|K|.

For p = 1 we get the classical affine surface area (1.6) which is independent of the position of
K in space.

In Section 3, we introduce the new affine invariant

ΩK = lim
p→∞

(
asp(K)
n|K◦|

)n+p

,

and describe properties of this new invariant. For example, in Corollary 3.9 we prove the
remarkable identity (1.3), which shows that the invariant ΩK is the exponential of the relative
entropy or Kullback–Leibler divergence DKL of the cone measures cmK and cmK◦ of K and K◦.

We show that the information inequality [13] for the relative entropy of the cone measures
implies an ‘information inequality’ for convex bodies

ΩK �
( |K|
|K◦|

)n

with equality if and only if K is an ellipsoid. Independently, we can derive this inequality from
properties of the Lp-affine surface areas.

The next proposition gives a sample of some inequalities that hold for the affine invariant
ΩK , among them an isoperimetric inequality. More can be found in Proposition 3.5.

Proposition. Let K be a convex body with its centroid at the origin.

(i) For all p � 0, ΩK � (asp(K)/n|K◦|)n+p.
(ii) We have ΩK � (|K|/|K◦|)n.
(iii) If in addition |K| = 1, then ΩK◦ � Ω(Bn

2 /|Bn
2 |1/n)◦ .

If K is in addition in C2
+, then equality holds in (i) and (ii) if and only if K is an ellipsoid

and in (iii) if and only if K is a normalized ellipsoid.

Theorem 2.2 states that the floating body Kδ is, up to a universal constant, homothetic to
the centroid body Zlog(e/2δ)

(K). This, and the geometric interpretations of Lp-affine surface
areas in terms of variants of the floating bodies [51, 56, 57], led us to investigate the Lp

centroid bodies also in the context of affine surface area. Note the similarities in behavior of
the floating body and the Lp centroid body. Both ‘approximate’ K as δ → 0, and p → ∞,
respectively: If K is symmetric and of volume 1, then Zp(K) → K as p → ∞.
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We found an amazing connection between the Lp centroid bodies and the new invariant ΩK .
The precise statement is given in Theorem 4.1 for convex bodies in C2

+. A forthcoming paper
will address general convex bodies.

In view of Theorem 2.2, the first part of Theorem 4.1 came as a surprise to us because it
reveals a different behavior of the bodies Kδ and Zlog (1/δ)(K) when δ → 0. Indeed, it was
shown in [41] that, with a constant cn that depends on n only,

lim
δ→0

cn
|(Kδ)◦| − |K◦|

δ2/(n+1)
= as−n(n+2)(K) = as−n/(n+2)(K◦),

whereas

lim
p→∞

p

log p
(|Z◦

p (K)| − |K◦|) =
n(n + 1)

2
|K◦|.

Even more surprising is the second part of Theorem 4.1, which, combined with
Proposition 3.6, shows how the new invariant and the Lp centroid bodies are related via the
formula (1.5). The details are given in Section 4.

Further notation. We work in R
n, which is equipped with a Euclidean structure 〈·, ·〉. We

denote by ‖ · ‖2 the corresponding Euclidean norm, and write Bn
2 for the Euclidean unit ball,

and Sn−1 for the unit sphere. Volume is denoted by | · |. We write σ for the rotationally invariant
surface measure on Sn−1.

A convex body is a compact convex subset C of R
n with non-empty interior. We say

that C is 0-symmetric, if x ∈ C implies that −x ∈ C. We say that C has center of mass
at the origin if

∫
C
〈x, θ〉 dx = 0 for every θ ∈ Sn−1. The support function hC : R

n → R of C is
defined by hC(x) = max{〈x, y〉 : y ∈ C}. The polar body C◦ of C is C◦ = {y ∈ R

n : 〈x, y〉 � 1
for all x ∈ C}.

Whenever we write a 	 b, we mean that there exist absolute constants c1, c2 > 0 such that
c1a � b � c2a. The letters c, c′, c1, c2 and so on. denote absolute positive constants which may
change from line to line. We refer the reader to the books [47, 48] for basic facts from the
Brunn–Minkowski theory and the asymptotic theory of finite-dimensional normed spaces.

2. Comparison of floating bodies and Lp centroid bodies

It is well known from mechanics that the body Z2(K) is an ellipsoid. Its polar body Z◦
2 (K) is

called the Binet ellipsoid of inertia. We see that Z1(K) = Z(K) is the classical centroid body
and it is a zonoid by definition (see [15, 48]).

The isotropic constant LK of a convex body K ∈ R
n is defined as

LK =
( |Z2(K)|

|Bn
2 |

)1/n

.

Here LK is an affine invariant and LK � LBn
2
.

A major open problem in convex geometry asks if there exists a universal constant C > 0
such that LK � C. The best known result up to date is due to Klartag [23] and states that
LK � Cn1/4, improving by a factor of logarithm an earlier result by Bourgain [9].

Let us briefly state some of the known properties of the Lp centroid bodies. For the proofs
and further references, see [45].

Let T ∈ SL(n), that is, T : R
n → R

n is a linear operator with determinant 1. Let T ∗ denote
its adjoint. Then

hZp(TK)(θ) =
(∫

TK

|〈x, θ〉|p dx

)1/p

=
(∫

K

|〈x, T �(θ)〉|p dx

)1/p

= hZp(K)(T �(θ))

or
hZp(TK)(θ) = hT (Zp(K))(θ).
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By Hölder’s inequality, we have for 1 � p � q � ∞ and convex bodies K in R
n with

|K| = 1, that
Z1(K) ⊆ Zp(K) ⊆ Zq(K) ⊆ Z∞(K) = K. (2.1)

As an application of the Brunn–Minkowski inequality, one has for 1 � p � q < ∞ that

Zq(K) ⊆ c
q

p
Zp(K). (2.2)

Here c > 0 is a universal constant.
Inequality (2.2) is sharp with the right constant for the l1n-ball [7].
By Brunn’s principle we get, for p � n and a (new) absolute constant c > 0 (for

example, [44]),
Zp(K) ⊇ cK. (2.3)

Lutwak, Yang and Zhang [34] and Lutwak and Zhang [39] proved the following Lp versions
of the Blaschke Santaló inequality and the Busemann–Petty inequality; see also Campi and
Gronchi [10] for an alternative proof.

Theorem 2.1 [34, 39]. Let K be a convex body in R
n of volume 1. Then, for every

1 � p � ∞,

|Z◦
p (K)| �

∣∣∣∣Z◦
p

(
Bn

2

|Bn
2 |1/n

)∣∣∣∣ ,
|Zp(K)| �

∣∣∣∣Zp

(
Bn

2

|Bn
2 |1/n

)∣∣∣∣
with equality if and only if K is an ellipsoid.

A computation shows that |Zp(Bn
2 /|Bn

2 |)|1/n 	√
p/(n + p). Hence, the following inequality,

proved in [45] for all p � 1 and a universal constant c > 0, can be viewed as an ‘Inverse
Lutwak–Yang–Zhang inequality’:

|Zp(K)|1/n � c

√
p

n + p
LK . (2.4)

We now want to compare Lp centroid bodies and floating bodies. As K is symmetric and has
volume 1, the floating body Kδ, for δ ∈ [0, 1], may be defined in the following way [49]:

Kδ =
⋂

θ∈Sn−1

{x ∈ K : |〈x, θ〉| � tθ}, (2.5)

where tθ = sup{t > 0 : |{x ∈ K : |〈x, θ〉| � t}| = 1 − δ}. Hence, for every θ ∈ Sn−1, one has that

hKδ
(θ) = tθ. (2.6)

Theorem 2.2. Let K be a symmetric convex body in R
n of volume 1. Let δ ∈ (0, 1

2 ).
Then we have, for every θ ∈ Sn−1,

c1hZlog (e/2δ)(K)(θ) � hKδ
(θ) � c2hZlog (e/2δ)(K)(θ)

or, equivalently,

c1Zlog (e/2δ)(K) ⊆ Kδ ⊆ c2Zlog (e/2δ)(K),

where c1, c2 > 0 are universal constants. Consequently,

1
c1

Z◦
log (e/2δ)(K) ⊇ K◦

δ ⊇ e

c2
Z◦

log (e/2δ)(K).
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Proof. Assume first that δ ∈ (1/e, 1/2). Then the fact that Kδ is isomorphic to Z2(K) has
already been proved in [42]. Moreover, a result of Latala [25] shows that Zp(K) is isomorphic
to Z2(K) for p ∈ (0, 2). So we may assume that δ � 1/e. We apply Markov’s inequality in (1.4)
and get

|{x ∈ K : |〈x, θ〉| � ehZp(K)(θ)}| � e−p.

Then (2.6) gives, for all p � 1,

ehZp(K)(θ) � hKe−p (θ). (2.7)

For the other side we use the Paley–Zygmund inequality: If Z � 0 is a random variable with
finite variance and λ ∈ (0, 1), then

Pr{Z � λE(Z)} � (1 − λ)2
E(Z)2

E(Z2)
.

Hence, for Z = |〈x, θ〉|p we get∣∣∣∣
{

x ∈ K : |〈x, θ〉|p � λ

∫
K

|〈x, θ〉|p dx

}∣∣∣∣ � (1 − λ)2
(
∫

K
|〈x, θ〉|p dx)2∫

K
|〈x, θ〉|2p dx

. (2.8)

We see that (2.2) implies that hZ2p(K)(θ) � 2chZp(K)(θ) for all θ ∈ Sn−1. So

(
∫

K
|〈x, θ〉|p dx)2∫

K
|〈x, θ〉|2p dx

�
(

1
2c

)2p

.

Choose λ = 1
2 . Then (2.8) becomes

|{x ∈ K : |〈x, θ〉| � 1
2hZp(K)(θ)}| � e−c1p.

Now we use again (2.6) to get

1
2hZp(K)(θ) � hK

e−c1p (θ)

or

hKe−p (θ) � 1
2hZp/c1 (K)(θ) � c2hZp(K)(θ), (2.9)

where we have used (2.2) again. Equations (2.7) and (2.9) then imply that

c2hZp(K)(θ) � hKe−p (θ) � ehZp(K)(θ).

Now choose p = log (e/2δ). This gives the theorem.

One does not expect that floating bodies and Lq centroid bodies are identical in general.
Indeed, observe that, for p < ∞, the bodies Zp(K) are C∞. However, one can easily check that
the floating body of the cube has points of non-differentiability on the boundary.

Theorem 2.2 allows us to ‘pass’ results about Lp centroid bodies to floating bodies.
In particular, (2.1) and (2.3) imply that, for δ < e−n, Kδ is isomorphic to K:

Kδ ⊆ K ⊆ c1Kδ.
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Moreover, (2.1) and (2.2) imply that

Kδ2 ⊆ Kδ1 ⊆ c2
log (e/2δ1)
log (e/2δ2)

Kδ2 , for δ1 � δ2,

where c1, c2 > 0 are universal constants.
As a consequence, we get the following corollary. There, d(K, L) and dBM(K, L), respectively,

mean the geometric Banach–Mazur distance of two convex bodies K and L:

d(K, L) = inf
{

a · b :
1
a
K ⊂ L ⊂ bK

}
,

dBM(K, L) = inf{d(K, T (L)) : T is a linear operator}.
It is known that one may choose a T ∈ SL(n) such that T (K1/2) is isomorphic to Bn

2 (see [42]
for details).

Corollary 2.3. Let K be a symmetric convex body of volume 1. Then, for every δ ∈ (0, 1),
one has

dBM(Kδ, B
n
2 ) � c1 log

1
δ

and

d(Kδ,K) 	 d(Kδ,Ke−n) � c2
n

log (1/δ)
,

where c1, c2 > 0 are universal constants.

Let us note that Theorem 2.1 and (2.4) imply sharp (up to LK) bounds for the volume of
Kδ; namely, letting cδ = max{log(1/δ), 1},

c1

√
cδ

n + cδ
� |Kδ|1/n � c2

√
cδ

n + cδ
LK ,

where c1, c2 > 0 are universal constants.

Remark. The corollary is also true for non-symmetric K.

In view of a result of Latala and Wojtaszczyk [26], Theorem 2.2 has another consequence:
The floating body of a symmetric convex body K corresponds to a level set of the Legendre
transform of the logarithmic Laplace transform on K.

Let x ∈ R
n and K be a symmetric convex body of volume 1. Let

Λ∗
K(x) := sup

u∈Rn

{
〈x, u〉 − log

∫
K

e〈x,u〉 dx

}

be the Legendre transform of the logarithmic Laplace transform on K.
For any r > 0 let Br(K) be the convex body defined as

Br(K) := {x ∈ R
n : Λ∗

K(x) � r}.
It was proved in [26] that Bp(K) is isomorphic to Zp(K),

c1Zp(K) ⊆ Bp(K) ⊆ c2Zp(K),

where c1, c2 > 0 are universal constants.
We combine this with Theorem 2.2 and obtain the following proposition.
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Proposition 2.4. Let K be a symmetric convex body of volume 1 in R
n. Then, for every

δ ∈ (0, 1
2 ), one has that

c1

{
x ∈ R

n : Λ∗
K(x) � log

1
δ

}
⊆ Kδ ⊆ c2

{
x ∈ R

n : Λ∗
K(x) � log

1
δ

}
,

c1, c2 > 0 are universal constants.

3. Relative entropy of cone measures and related inequalities

Let K be a convex body in R
n with its centroid at the origin. For real p �= −n the Lp-affine

surface area asp(K) of K was defined in (1.1) and (1.7) in Section 1.
If K is in C2

+, then (1.1) and (1.7) can be written as integrals over the boundary ∂Bn
2 = Sn−1

of the Euclidean unit ball Bn
2 in R

n:

asp(K) =
∫
Sn−1

fK(u)n/(n+p)

hK(u)n(p−1)/(n+p)
dσ(u)

and

as±∞(K) =
∫
Sn−1

1
hK(u)n

dσ(u) = n|K◦|. (3.1)

Here fK(u) is the curvature function, that is, the reciprocal of the Gauss curvature κ(x) at
that point x in ∂K that has u as the outer normal.

First, we recall results proved in [56].

Proposition 3.1 [56]. Let K be a convex body in R
n such that μ{x ∈ ∂K : κ(x) = 0} = 0.

Let p �= −n be a real number. Then the following properties are satisfied.

(i) The function p → (asp(K)/as∞(K))n+p is decreasing in p ∈ (−n,∞).
(ii) The function p → (asp(K)/n|K◦|)n+p is decreasing in p ∈ (−n,∞).
(iii) The function p → (asp(K)/n|K|)(n+p)/p is increasing in p ∈ (−n,∞).
(iv) We have that asp(K) = asn2/p(K◦).

Remark. (i) It was shown in [21] that, for p > 0, (iv) holds without any assumptions on
the boundary of K.

(ii) Also, it follows from the proof in [56] that (i)–(iii) hold without assumptions on the
boundary of K if p � 0.

(iii) Proposition 3.1(ii) is not explicitly stated in [56], but follows (without any assumptions
on the boundary of K if p � 0) from, for example, inequality [56, (4.20)] and the following fact
(see [51]): Let K be a convex body in R

n. Then

as∞(K) � n|K◦| (3.2)

with equality if K is in C2
+.

(iv) Strict monotonicity in Proposition 3.1(i)–(iii).
Proposition 3.1(i)–(iii) was proved in [56] using Hölder’s inequality. It follows immediately
from the characterization of equality in Hölder’s inequality, that strict monotonicity holds in
Proposition 3.1(i)–(iii) if and only if μ, almost everywhere (a.e) on ∂K

κ(x)
〈x,N(x)〉n+1

= c,

where c > 0 is a constant, unless κ(x) = 0 μ, a.e. on ∂K. If κ(x) = 0 μ, a.e. on ∂K, then,
for all p > 0, (asp(K)/as∞(K))n+p = constant = 0, (asp(K)/n|K◦|)n+p = constant = 0 and
(asp(K)/n|K|)(n+p)/p = constant = 0.
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If K is in C2
+, then the following theorem due to Petty [46] implies that we have strict

monotonicity in Proposition 3.1(i)–(iii) unless K is an ellipsoid, in which case the quantities in
Proposition 3.1(i)–(iii) are all constant equal to 1.

Theorem 3.2 [46]. Let K be a convex body in C2
+. We have that K is an ellipsoid if and

only if, for all x in ∂K,

κ(x)
〈x,N(x)〉n+1

= c,

where c > 0 is a constant.

We now introduce new affine invariants.

Definition 3.3. (i) Let K be a convex body in R
n with its centroid at the origin. We define

ΩK = lim
p→∞

(
asp(K)
n|K◦|)

)n+p

,

(ii) Let K1, . . . , Kn be convex bodies in R
n, all with their centroids at the origin. We define

ΩK1,...,Kn
= lim

p→∞

(
asp(K1, . . . , Kn)
as∞(K1, . . . , Kn)

)n+p

.

Here

asp(K1, . . . , Kn) =
∫
Sn−1

[hK1(u)1−pfK1(u) . . . h1−p
Kn

fKn
(u)]1/(n+p) dσ(u)

is the mixed p-affine surface area introduced for 1 � p < ∞ in [33] and for general p in [57]:

as∞(K1, . . . , Kn) =
∫
Sn−1

1
hK1(u)

. . .
1

hKn
(u)

dσ(u)

= nṼ (K◦
1 , . . . , K◦

n)

is the dual mixed volume of K◦
1 , . . . , K◦

n, introduced by Lutwak [31].

Remark. (i) If μ{x ∈ ∂K : κ(x) = 0} = 0, then ΩK > 0. If κ(x) = 0 μ -a.e. on ∂K, then
ΩK = 0. In particular, ΩP = 0 for all polytopes P .

(ii) If K is in C2
+, then, by (3.2), as∞(K) = n|K◦| and thus we then also have

ΩK = lim
p→∞

(
asp(K)
as∞(K)

)n+p

. (3.3)

(iii) As for all p �= −n and for all linear, invertible transformations T , asp(T (K)) =
|det(T )|(n−p)/(n+p)asp(K) (see [51]) and asp(T (K1), . . . , T (Kn)) = |det(T )|(n−p)/(n+p)asp

(K1, . . . , Kn) [57], we get that

ΩT (K) = |det(T )|2nΩK , (3.4)

and

Ω(T (K1),...,T (Kn)) = |det(T )|2nΩK1,...,Kn
.

In particular, ΩK and ΩK1,...,Kn
are invariant under linear transformations T with

|det(T )| = 1.
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Corollary 3.4. Let K be a convex body R
n with its centroid at the origin. Then

ΩK = lim
p→0

(
asp(K◦)
n|K◦|

)n(n+p)/p

.

Proof. By Proposition 3.1(iv) and Remark (i) after it

ΩK = lim
p→∞

(
asp(K)
n|K◦|

)n+p

= lim
p→∞

(
asn2/p(K◦)

n|K◦|
)n+p

= lim
q→0

(
asq(K◦)
n|K◦|

)n+n2/q

= lim
q→0

(
asq(K◦)
n|K◦|

)n(n+q)/q

.

Example. For 1 � r < ∞, let Bn
r = {x ∈ R

n : (
∑n

i=1 |xi|r)1/r � 1} and let Bn
∞ = {x ∈

R
n : max1�i�n |xi| � 1}. Then a straightforward, but tedious calculation gives

ΩBn
r

=
exp(−(n2(r − 2)/r)(Γ′((r − 1)/r)/Γ((r − 1)/r) − Γ′(n(r − 1)/r)/Γ(n(r − 1)/r)))

(r − 1)n(n−1)
.

(3.5)
Indeed, it was shown in [51] that

asp(Bn
r ) =

2n(r − 1)p(n−1)/(n+p)

rn−1

(Γ(n + rp − p)/r(n + p))n

Γ(n(n + rp − p)/r(n + p))
.

Therefore,

asp(Bn
r )

n|(Bn
r )◦| =

1
(r − 1)n(n−1)/(n+p)

(Γ(n + rp − p)/r(n + p))n

Γ(n(n + rp − p)/r(n + p))
Γ(n(r − 1)/r)

(Γ((r − 1)/r))n

and

ΩBn
r

= lim
p→∞

(
asp(Bn

r )
n|(Bn

r )◦|
)n+p

=
exp(−(n2(r − 2)/r)(Γ′((r − 1)/r)/Γ((r − 1)/r) − Γ′(n(r − 1)/r)/Γ(n(r − 1)/r)))

(r − 1)n(n−1)
.

The next propositions describe more properties of ΩK . Some were already stated in Section 1.

Proposition 3.5. Let K be a convex body with its centroid at the origin.

(i) For all p > 0,

ΩK �
(

asp(K◦)
n|K◦|

)n(n+p)/p

.

If K is in addition in C2
+, then equality holds if and only if K is an ellipsoid.

(ii) For all p � 0,

ΩK �
(

asp(K)
n|K◦|

)n+p

.

If K is in addition in C2
+, then equality holds if and only if K is an ellipsoid.

(iii) We have that ΩK � (|K|/|K◦|)n. If K is in addition in C2
+, then equality holds if and

only if K is an ellipsoid.

(iv) We have that ΩKΩK◦ � 1. If K is in addition in C2
+, then equality holds if and only if

K is an ellipsoid.
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Proof. (i) The first part follows from Corollary 3.4, Proposition 3.1(iii) and the Remark (ii)
after it. The second part follows from Corollary 3.4, Proposition 3.1(iii) and the Remark (iv)
after it.

(ii) The first part follows from the definition of ΩK , Proposition 3.1(ii) and the Remark (ii)
after it. The second part follows from the definition of ΩK , Proposition 3.1(ii) and the Remark
(iv) after it.

(iii) By (ii), ΩK � (as0(K)/n|K◦|)n = (|K|/|K◦|)n.
(iv) Condition (iv) is immediate from (iii).

We concentrate on describing the properties of ΩK . The analog properties for the invariant
ΩK1,...,Kn

also hold and are proved similarly using results about the mixed p-affine surface
areas proved in [57]. For instance, the analog to Proposition 3.5(ii) holds: For all p � 0

ΩK1,...,Kn
�
(

asp(K1, . . . , Kn)
as∞(K1, . . . , Kn)

)n+p

.

This follows from a monotonicity behavior of (asp(K1, . . . , Kn)/as∞(K1, . . . , Kn))n+p, which
was shown in [57]. And the analog to Proposition 3.6(ii) holds:

ΩK1,...,Kn
= exp

(
1

as∞(K1, . . . , Kn)

∫
Sn−1

∑n
i=1 log[fKi

hn+1
Ki

]∏n
i=1 hKi

dσ

)
.

Proposition 3.6. Let K be a convex body R
n with its centroid at the origin.

(i)

ΩK = exp
(

1
|K◦|

∫
∂K◦

〈x,NK◦(x)〉 log
κK◦(x)

〈x,NK◦(x)〉n+1
dμK◦(x)

)
.

In addition, if K is in C2
+, then

(ii)

ΩK = exp
(
− 1
|K◦|

∫
∂K

κK(x)
〈x,NK(x)〉n log

κK(x)
〈x,NK(x)〉n+1

dμK(x)
)

.

(iii)

1
|K|

∫
∂K

〈x,NK(x)〉 log
κK(x)

〈x,NK(x)〉n+1
dμK(x)

� n log
|K◦|
|K|

� 1
|K◦|

∫
∂K

κK(x)
〈x,NK(x)〉n log

κK(x)
〈x,NK(x)〉n+1

dμK(x).
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Proof. (i) By Corollary 3.4,

log ΩK = log

(
lim
p→0

(
asp(K◦)
n|K◦|

)n(n+p)/p
)

= log

(
lim
p→0

(
asp(K◦)
n|K◦|

)n2/p
)

= lim
p→0

n2

p
log

asp(K◦)
n|K◦| = n2 lim

p→0

(d/dp)(asp(K◦))
asp(K◦)

= n2 lim
p→0

n(n + p)−2

asp(K◦)

∫
∂K◦

κK◦(x)p/(n+p)

〈x,NK◦(x)〉n(p−1)/(n+p)

× log
κK◦(x)

〈x,NK◦(x)〉n+1
dμK◦(x)

=
1

|K◦|
∫
∂K◦

〈x,NK◦(x)〉 log
κK◦(x)

〈x,NK◦(x)〉n+1
dμK◦(x).

(ii) If K is in C2
+, then we have, by (3.3), that

log ΩK = log

(
lim

p→∞

(
asp(K)
as∞(K)

)n+p
)

= lim
p→∞

log (asp(K)/as∞(K))
(n + p)−1

= − lim
p→∞

(n + p)2(d/dp)(asp(K))
asp(K)

= − lim
p→∞

(n + p)2

asp(K)

∫
∂K

d

dp

(
exp

(
log (κK(x))

p

n + p

− log (〈x,NK(x)〉)n(p − 1)
n + p

))
dμK(x)

= − lim
p→∞

(n + p)2

asp(K)

∫
∂K

κK(x)p/(n+p)

〈x,NK(x)〉n(p−1)/(n+p)

(
n

(n + p)2
log (κK(x))

− n(n + 1)
(n + p)2

log (〈x,NK(x)〉)
)

dμK(x)

= − lim
p→∞

n

asp(K)

∫
∂K

κK(x)p/(n+p)

〈x,NK(x)〉n(p−1)/(n+p)
log

κK(x)
〈x,NK(x)〉n+1

dμK(x)

= − n

as∞(K)

∫
∂K

κK(x)
〈x,NK(x)〉n log

κK(x)
〈x,NK(x)〉n+1

dμK(x).

(iii) Combine Proposition 3.5(iii) with (i) and (ii).

Let (X,μ) be a measure space and let dP = p dμ and dQ = q dμ be probability measures
on X that are absolutely continuous with respect to the measure μ. The Kullback–Leibler
divergence or relative entropy from P to Q is defined as [13]

DKL(P‖Q) =
∫
X

p log
p

q
dμ. (3.6)

The information inequality (also called Gibb’s inequality) [13] holds for the Kullback–Leibler
divergence: Let P and Q be as above. Then

DKL(P‖Q) � 0, (3.7)

with equality if and only if P = Q.
The invariant ΩK is related to relative entropies on K and a corresponding information

inequality holds, which is exactly the inequality of Proposition 3.5(iii).
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Proposition 3.7. Let K be a convex body in R
n that is C2

+. Let

p(x) =
κK(x)

〈x,NK(x)〉nn|K◦| , q(x) =
〈x,NK(x)〉

n|K| . (3.8)

Then dP = p dμK and dQ = q dμK are probability measures on ∂K that are absolutely
continuous with respect to μK and

DKL(P‖Q) = log
( |K|
|K◦|Ω

−1/n
K

)
(3.9)

and

DKL(Q‖P ) = log
( |K◦|

|K| Ω−1/n
K◦

)
. (3.10)

Moreover, the information inequality implies that

ΩK �
( |K|
|K◦|

)n

with equality if and only if K is an ellipsoid.

Proof of Proposition 3.7. As

n|K| =
∫
∂K

〈x,NK〉 dμK(x) and n|K◦| =
∫
∂K

κK(x)
〈x,NK(x)〉n dμK(x),

∫
∂K

p dμK =
∫

∂K
q dμK = 1 and hence P and Q are probability measures that are absolutely

continuous with respect to μK on K.
Equation (3.9) or (3.10) follows from the definition of the relative entropy (3.6) and

Proposition 3.6(ii) or Proposition 3.6(i), respectively.
By (3.7), equality holds in the inequality of the proposition, if and only if, for all x ∈ ∂K,

κK(x)
〈x,NK(x)〉n+1

=
|K◦|
|K| = constant,

which holds, by the above-mentioned theorem of Petty [46] if and only if K is an ellipsoid.

Let K be a convex body in R
n. Recall that the normalized cone measure cmK on ∂K is

defined as follows: For every measurable set A ⊆ ∂K,

cmK(A) =
1
|K| |{ta : a ∈ A, t ∈ [0, 1]}|. (3.11)

For more information about cone measures we refer to, for example, [6, 16, 43].
The next proposition is well known. It shows that the measures P and Q defined in

Proposition 3.7 are the cone measures of K and K◦. We include the proof for completeness.
We see that NK : ∂K → Sn−1, x → NK(x) is the Gauss map.

Proposition 3.8. Let K be a convex body in R
n that is C2

+. Let P and Q be the
probability measures on ∂K defined by (3.8). Then

P = N−1
K NK◦cmK◦ and Q = cmK ,

or, equivalently, for every measurable subset A in ∂K

P (A) = cmK◦(N−1
K◦(NK(A))) and Q(A) = cmK(A).
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Proof.

Q(A) =
1

n|K|
∫
A

〈x,NK(x)〉 dμK(x) = cmK(A).

Also

P (A) =
∫
A

κK(x)
〈x,NK(x)〉n

dμK(x)
n|K◦| =

1
n|K◦|

∫
NK(A)

1
hn

K(u)
dσ(u).

Let B ⊆ ∂K◦. Then

cmK◦(B) =
1

|K◦|
∣∣∣∣
{

x ∈ R
n : ‖x‖K◦ � 1,

x

‖x‖2
∈ NK◦(B)

}∣∣∣∣ .
Let Δ = {x ∈ R

n : ‖x‖K◦ � 1, x/‖x‖2 ∈ NK◦(B)}. We have

cmK◦(B) =
|Δ|
|K◦| =

1
|K◦|

∫∞

0

∫
Sn−1

rn−11Δ(rθ) dr dσ(θ)

=
1

|K◦|
∫
NK◦ (B)

∫1/‖θ‖K◦

0

rn−1 dr dσ(θ)

=
1

n|K◦|
∫
NK◦ (B)

1
hn

K(θ)
dσ(θ).

Let B ∈ ∂K◦ be such that NK◦(B) = NK(A). This means that B = N−1
K◦(NK(A)). Then

P (A) = cmK◦(N−1
K◦(NK(A))), which completes the proof.

Therefore, with P and Q defined as in (3.8),

DKL(P‖Q) = DKL(NKN−1
K◦cmK◦‖cmK), (3.12)

and we get as a corollary to Proposition 3.7 that the invariant ΩK is the exponential of the
relative entropy of the cone measures of K and K◦.

Corollary 3.9. Let K be a convex body in C2
+. Then

Ω1/n
K =

|K|
|K◦| exp (−DKL(NKN−1

K◦cmK◦‖cmK)).

Finally, an isoperimetric inequality holds for the affine invariant ΩK .

Proposition 3.10. Let K be a convex body in C2
+ of volume 1. Then

ΩK◦ � Ω(B2
n/|B2

n|1/n)◦

with equality if and only if K is a normalized ellipsoid.

Proof. The proof follows from the above information inequality for convex bodies together
with the Blaschke Santaló inequality and the fact that Ω(B2

n/|B2
n|1/n)◦ = |B2

n|2n.

4. Zp(K) for K in C2
+

In this section, we show how ΩK is related to the Lp centroid bodies. The main theorem of
this section is Theorem 4.1. We assume there that K is symmetric, mainly because the bodies
Zp(K) are symmetric by definition. Also, throughout this section we assume that K is of
volume 1.
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Theorem 4.1. Let K be a symmetric convex body in R
n of volume 1 that is in C2

+. Then:
(i)

lim
p→∞

p

log p
(|Z◦

p (K)| − |K◦|) =
n(n + 1)

2
|K◦|;

(ii)

lim
p→∞ p

(
|Z◦

p (K)| − |K◦| − n(n + 1)
2p

log p|Z◦
p (K)|

)

= lim
p→∞ p

(
|Z◦

p (K)| − |K◦| − n(n + 1)
2p

log p|K◦|
)

= −1
2

∫
Sn−1

hK(u)−n log(2n+1πn−1hK(u)n+1fK(u)) dσ(u)

=
1
2

∫
∂K

κ(x)
〈x,N(x)〉n log

(
κ(x)

2n+1πn−1〈x,N(x)〉n+1

)
dμK(x).

Thus, Theorem 4.1 shows that if K is a symmetric convex body in C2
+ of volume 1, then

lim
p→∞ p

(
|Z◦

p (K)| − |K◦| − n(n + 1) log p

2p
|Z◦

p (K)|
)

= lim
p→∞ p

(
|Z◦

p (K)| − |K◦| − n(n + 1)
2p

log p|K◦|
)

=
1
2

∫
∂K

κK(x)
〈x,N(x)〉n log

(
κK(x)

2n+1πn−1〈x,N(x)〉n+1

)
dμK(x)

= − log (2n+1πn−1)
2

∫
∂K

κK(x)
〈x,N(x)〉n dμK(x)

+
1
2

∫
∂K

κK(x)
〈x,N(x)〉n log

(
κK(x)

〈x,N(x)〉n+1

)
dμK(x)

= log (2n+1πn−1)
n|K◦|

2
− |K◦|

2
log ΩK = −|K◦|

2
log

ΩK

2n(n+1)πn(n−1)

or

lim
p→∞ p

( |Z◦
p (K)|
|K◦|

(
1 − n(n + 1) log p

2p

)
− 1

)

= lim
p→∞ p

((
1 − n(n + 1) log p

2p

) |Z◦
p (K)|
|K◦| − 1

)
= −1

2
log

ΩK

2n(n+1)πn(n−1)
. (4.1)

So we have the following corollary.

Corollary 4.2. Let K and C be symmetric convex bodies of volume 1 in C2
+. Then:

(i)

lim
p→∞

2p

n

(
(1 − n(n + 1) log p/2p)|Z◦

p (K)|
|K◦| − 1

)

= lim
p→∞

2p

n

( |Z◦
p (K)|
|K◦| −

(
1 − n(n + 1) log p

2p

))
= −1

2
log

Ω1/n
K

2n+1πn−1

= (n + 1) log
(

2π(n−1)/(n+1)

|K◦|
)

+ DKL(NKN−1
K◦cmK◦‖cmK);
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(ii)

lim
p→∞ p

((
1 − n(n + 1) log p

2p

) |Z◦
p (K)|
|K◦| − 1

)
� 1

2
log

(
2n(n+1)πn(n−1) |K◦|

|K|
)

.

The corresponding statement for limp→∞ p(|Z◦
p (K)|/|K◦| − (1 − n(n + 1) log p/2p))

also holds.
(iii)

lim
p→∞ p

(
1 − n(n + 1) log p

2p

)( |Z◦
p (K)|
|K◦| − |Z◦

p (C)|
|C◦|

)
=

1
2n

log
ΩC

ΩK
.

Proof. (i) follows from (4.1) and Corollary 3.9, (ii) follows from Proposition 3.5 and
(iii) follows from (4.1).

The remainder of the section is devoted to the proof of Theorem 4.1. We need several lemmas
and notation.

Let x, y > 0. Let Γ(x) =
∫∞
0

λx−1e−λ dλ be the Gamma function and B(x, y) =
∫1

0
λx−1

(1 − λ)y−1 dλ = Γ(x)Γ(y)/Γ(x + y) be the Beta function.
We write f(p) = g(p) ± o(p) if there exists a function h(p) such that f(p) = g(p) + h(p)

and limp→∞ ph(p) = 0, that is, h(p) has terms of order 1/p2 and higher. Similarly, f(p) =
g(p) ± o(p2) if there exists a function h(p) such that f(p) = g(p) + h(p) and limp→∞ p2h(p) = 0,
that is, h(p) has terms of order 1/p3 and higher. We write f(p) = g(p) ± O(p) if there exists a
function h(p) such that f(p) = g(p) + h(p) and limp→∞ h(p) = 0.

Lemma 4.3. (i) Let p > 0. Then(
B

(
p + 1,

n + 1
2

))n/p

= 1 − n(n + 1)
2p

log p +
n

p
log

(
Γ
(

n + 1
2

))

+
n2(n + 1)2

8p2
(log p)2 − n2(n + 1)

2p2
log

(
Γ
(

n + 1
2

))
log p

+
n

2p2

[
n

(
log

(
Γ
(

n + 1
2

)))2

− n + 1
4

(n(n + 1) + 2(n + 3))

]

± o(p2).

(ii) Let 0 � a � 1. Then(∫1

0

up(1 − u)(n−1)/2(1 − a(1 − u))(n−1)/2 du

)n/p

= 1 − n(n + 1)
2p

log p

+
n

p
log

(
Γ
(

n + 1
2

))
+

n2(n + 1)2

8p2
(log p)2 − n2(n + 1)

2p2
log

(
Γ
(

n + 1
2

))
log p

+
n

2p2

[
n

(
log

(
Γ
(

n + 1
2

)))2

− (n + 1)(n2 + 3n + 6)
4

− (n + 1)

(
n − 1

2
1

)
a

]
± o(p2).

The proof of Lemma 4.3 is in the Appendix.
Let f : R+ → R+ be a C2 log-concave function with

∫
R+

f(t) dt < ∞ and let p � 1. Let
gp(t) = tpf(t) and let tp = tp(f) be the unique point such that g′p(tp) = 0. We make use of the
following lemma due to Klartag [24] (Lemmas 4.3 and 4.5).
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Lemma 4.4. Let f be as above. For every ε ∈ (0, 1),
∫∞

0

tpf(t) dt � (1 + Ce−cpε2
)
∫ tp(1+ε)

tp(1−ε)

tpf(t) dt,

where C > 0 and c > 0 are universal constants.

We think that the next lemma is well known. We give a proof for completeness.

Lemma 4.5. Let u ∈ Sn−1. Let f and tp be as above and f be also such that it is decreasing
and a probability density on [0, h(u)]. Then

lim
p→∞ tp = h(u).

Proof. Since the support of f is [0, h(u)], by the definition of tp we have that tp � h(u) for
all p. So we only have to show that limp→∞ tp � h(u).

By Hölder’s inequality, (
∫h(u)

0
tpf(t) dt)1/p → h(u). Thus, for ε > 0 given, there exists pε such

that for all p � pε, ∫h(u)

0

tpf(t) dt � (h(u) − ε)p.

By Lemma 4.4, for all 0 < δ < 1,
∫∞
0

tpf(t) dt � (1 + Ce−cpδ2
)
∫tp(1+δ)

tp(1−δ)
tpf(t) dt. We choose

δ = 1/p1/4 with p > pε and get, using the monotonicity behavior of tpf on the respective
intervals, that

(h(u) − ε)p � (1 + Ce−c
√

p)

[∫ tp

tp(1−δ)

tpf(t) dt +
∫ tp(1+δ)

tp

tpf(t) dt

]

� (1 + Ce−c
√

p)p−1/4tpf(tp)tpp.

As f is decreasing, f(tp) � f(0). Moreover, tp � h(u). Thus, for p � pε large enough,
((1 + Ce−c

√
p)p−1/4tpf(tp))1/p � 1 + ε and hence h(u) − ε < (1 + ε)tp.

Remark. We will apply Lemma 4.4 to the function f(t) = |K ∩ (u⊥ + tu)|, u ∈ Sn−1. We
show below that f is C2. Thus, tp is well defined and Lemma 4.4 holds. Also, tp is an increasing
function of p and by Lemma 4.5, limp→∞ tp = hK(u).

We also think that the following lemma is well known but we could not find a proof in the
literature. Therefore, we include a proof.

Lemma 4.6. Let K be a convex body C2
+. Let u ∈ Sn−1 and let Ht be the hyperplane

orthogonal to u at distance t from the origin. Let f(t) = |K ∩ Ht|. Then f is C2. In fact,

f ′(t) = −
∫
∂K∩Ht

〈u,NK(x)〉
(1 − 〈u,NK(x)〉2)1/2

dμ∂K∩Ht
(x)

and

f ′′(t) = −
∫
∂K∩Ht

[
κ(xt)1/(n−1)

(1 − 〈NK(xt), u〉2)3/2
− (n − 2)〈NK(xt), u〉2

〈NK∩Ht
(xt), xt〉(1 − 〈NK(xt), u〉2)

]
dμ∂K∩Ht

(xt).
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Proof. We assume that int(K) ∩ Ht �= ∅. To show that f ∈ C2, we compute the derivatives
of f . We first show that

f ′(t) = −
∫
∂K∩Ht

〈u,NK(x)〉
(1 − 〈u,NK(x)〉2)1/2

dμ∂K∩Ht
(x).

Indeed, for x ∈ ∂K ∩ Ht let α(x) be the (smaller) angle formed by NK(x) and u. Then
cos α(x) = 〈u,NK(x)〉 and

f ′(t) = lim
ε→0

1
ε
(|K ∩ Ht+ε| − |K ∩ Ht|) = − lim

ε→0

1
ε

(∫
∂K∩Ht

ε cot α(x) dμ∂K∩Ht
(x)

)

= −
∫
∂K∩Ht

〈u,NK(x)〉
(1 − 〈u,NK(x)〉2)1/2

dμ∂K∩Ht
(x).

We show next that

f ′′(t) = −
∫
∂K∩Ht

[
κ(xt)1/(n−1)

(1 − 〈NK(xt), u〉2)3/2
− (n − 2)〈NK(xt), u〉2

〈NK∩Ht
(xt), xt〉(1 − 〈NK(xt), u〉2)

]
dμ∂K∩Ht

(xt).

By definition

f ′′(t) = − lim
ε→0

1
ε

(∫
∂K∩Ht+ε

〈u,NK(yt+ε)〉
(1 − 〈u,NK(yt+ε)〉2)1/2

dμ∂K∩Ht+ε
(yt+ε)

−
∫
∂K∩Ht

〈u,NK(xt)〉
(1 − 〈u,NK(xt)〉2)1/2

dμ∂K∩Ht
(xt)

)
.

We project K ∩ Ht+ε onto K ∩ Ht and we want to integrate both expressions over ∂K ∩ Ht.
To do so, we fix, after the projection, an interior point x0 in K ∩ Ht+ε. For xt ∈ ∂K ∩ Ht let
[x0, xt] be the line segment from x0 to xt and let xt+ε = ∂K ∩ Ht+ε ∩ [x0, xt]. Now observe that

dμ∂K∩Ht+ε
=

1
〈NK∩Ht

(xt), NK∩Ht+ε
(xt+ε)〉

(‖xt+ε‖
‖xt‖

)n−2

dμ∂K∩Ht
,

where NK∩Ht
(xt) is the outer normal in xt to the boundary of the (n − 1)-dimensional convex

body K ∩ Ht and, similarly, NK∩Ht+ε
(xt+ε) is the outer normal in xt+ε to the boundary of the

(n − 1)-dimensional convex body K ∩ Ht+ε.
Note further that

‖xt‖ − ‖xt+ε‖ =
ε〈NK(xt), u〉‖xt‖

〈NK∩Ht
(xt), xt〉(1 − 〈NK(xt), u〉2)1/2

+ higher order terms in ε.

Therefore,

(‖xt+ε‖
‖xt‖

)n−2

=
(

1 − ε〈NK(xt), u〉
〈NK∩Ht

(xt), xt〉(1 − 〈NK(xt), u〉2)1/2

)n−2

= 1 − (n − 2)ε〈NK(xt), u〉
〈NK∩Ht

(xt), xt〉(1 − 〈NK(xt), u〉2)1/2

+ higher order terms in ε.
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Thus,

f ′′(t) = − lim
ε→0

1
ε

∫
∂K∩Ht

[ 〈u,NK(yt+ε)〉
〈NK∩Ht

(xt), NK∩Ht+ε
(xt+ε)〉(1 − 〈u,NK(yt+ε)〉2)1/2

×
(

1 − (n − 2)ε〈NK(xt), u〉
〈NK∩Ht

(xt), xt〉(1 − 〈NK(xt), u〉2)1/2
+ higher order terms in ε

)

− 〈u,NK(xt)〉
(1 − 〈u,NK(xt)〉2)1/2

]
dμ∂K∩Ht

(xt)

= −
∫
∂K∩Ht

lim
ε→0

1
ε

[ 〈u,NK(yt+ε)〉
〈NK∩Ht

(xt), NK∩Ht+ε
(xt+ε)〉(1 − 〈u,NK(yt+ε)〉2)1/2

×
(

1 − (n − 2)ε〈NK(xt), u〉
〈NK∩Ht

(xt), xt〉(1 − 〈NK(xt), u〉2)1/2
+ higher order terms in ε

)

− 〈u,NK(xt)〉
(1 − 〈u,NK(xt)〉2)1/2

]
dμ∂K∩Ht

(xt).

We can interchange integration and limit using Lebesgue’s theorem as the functions under the
integral are uniformly (in t) bounded by a constant.

Define gx(t) = 〈NK(xt), u〉/(1 − 〈u,NK(xt)〉2)1/2. Then the expression under the integral
becomes

lim
ε→0

1
ε

[
gy(t + ε)

〈NK∩Ht
(xt), NK∩Ht+ε

(xt+ε)〉
(

1 − (n − 2)ε〈NK(xt), u〉
〈NK∩Ht

(xt), xt〉(1 − 〈NK(xt), u〉2)1/2

+ higher order terms in ε

)
− gx(t)

]

= lim
ε→0

1
ε
[gy(t + ε) − gx(t)] − (n − 2)〈NK(xt), u〉2

〈NK∩Ht
(xt), xt〉(1 − 〈NK(xt), u〉2) .

Here we have also used that, as ε → 0, xt+ε → xt, NK∩Ht+ε
(xt+ε) → NK∩Ht

(xt) and
gy(t + ε) → gx(t).

To compute limε→0(1/ε)[gy(t + ε) − gx(t)], we approximate the boundary of ∂K in xt by
an ellipsoid. This can be done as ∂K is C2

+ by assumption (see Lemma 4.8). To simplify the
computations, we assume that the approximating ellipsoid is a Euclidean ball. The case of the
ellipsoid is treated similarly; the computations are just slightly more involved. As the expression
under the integral depends only on the angles between the vectors involved, we can put the
origin so that the approximating Euclidean ball is centered at 0. Let r = κ(xt)−1/(n−1) be its
radius. Then

lim
ε→0

1
ε
[gy(t + ε) − gx(t)] =

1
r(1 − 〈NK(xt), u〉2)3/2

=
κ(xt)1/(n−1)

(1 − 〈NK(xt), u〉2)3/2
.

Altogether

f ′′(t) = −
∫
∂K∩Ht

[
κ(xt)1/(n−1)

(1 − 〈NK(xt), u〉2)3/2
− (n − 2)〈NK(xt), u〉2

〈NK∩Ht
(xt), xt〉(1 − 〈NK(xt), u〉2)

]
dμ∂K∩Ht

(xt).

Lemma 4.7. Let K be a symmetric convex body of volume 1 in C2
+.

(i) The functions

p

log(p)
1

hZp(K)(u)n

(
1 − hZp(K)(u)n

hK(u)n

)

are uniformly (in p) bounded by a function that is integrable on Sn−1.
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(ii) The functions

p

hZp(K)(u)n

(
1 − hZp(K)(u)n

hK(u)n
− n(n + 1)

2
log(p)

p

hZp(K)(u)n

hK(u)n

)

are uniformly (in p) bounded by a function that is integrable on Sn−1.

Proof. (i) Let u ∈ Sn−1. Let x ∈ ∂K be such that NK(x) = u. As K is in C2
+, by the

Blaschke rolling theorem (see [48]), there exists a ball with radius r0 that rolls freely in K: for
all x ∈ ∂K, Bn

2 (x − r0N(x), r0) ⊂ K. As K is symmetric,

hZp
(u)n =

(
2

∫hK(u)

0

tp|{y ∈ K : 〈u, y〉 = t}| dt

)n/p

�
(

2
∫hK(u)

hK(u)−r

tp|{y ∈ Bn
2 (x − r0u, r0) : 〈u, y〉 = t}| dt

)n/p

= 2n/p|Bn−1
2 |n/p

(∫hK(u)

hK(u)−r0

tp
(

2r0(hK(u) − t)
[
1 − hK(u) − t

2r0

])(n−1)/2

dt

)n/p

.

The equality holds as the (n − 1)-dimensional Euclidean ball

Bn
2 (x − r0u, r0) ∩ {y ∈ R

n : 〈u, y〉 = t}
has radius (2r0(hK(u) − t)[1 − (hK(u) − t)/2r0])1/2. Now, where, to abbreviate, we write hK ,
hZp(K), instead of hK(u), hZp(K)(u), and where we use that 1

2 � 1 − (hK(u) − t)/2r0,

hZp
(u)n � 2n/p|Bn−1

2 |n/p(r0hK)n(n−1)/2p

(∫hK

hK−r0

tp
(

1 − t

hK

)(n−1)/2

dt

)n/p

= hn
K(2|Bn−1

2 |h(n+1)/2
K r

(n−1)/2
0 )n/p

(∫1

1−r0/hK

wp(1 − w)(n−1)/2 dw

)n/p

. (4.2)

As K is symmetric, r0 � hK(u). If r0 = hK(u), then

hn
Zp(K)

hn
K

� (2r
(n−1)/2
0 h

(n+1)/2
K |Bn−1

2 |)n/p

(∫1

0

wp(1 − w)(n−1)/2 dw

)n/p

.

If r0 < hK(u), then we apply Lemma 4.4 to the function f(w) = (1 − w)(n−1)/2. We choose
ε so small and p0 so large that ε + (1 + ε)(n − 1)/2p0 � r0/hK . Then Lemma 4.4 holds and
we get, for all p � p0,

hn
Zp(K)

hn
K

� (2r
(n−1)/2
0 h

(n+1)/2
K |Bn−1

2 |)n/p

(∫1

1−r0/hK

wp(1 − w)(n−1)/2 dw

)n/p

�
(

2r
(n−1)/2
0 h

(n+1)/2
K |Bn−1

2 |
1 + Ce−cpε2

)n/p(∫1

0

wp(1 − w)(n−1)/2 dw

)n/p

=

(
2r

(n−1)/2
0 h

(n+1)/2
K |Bn−1

2 |
1 + Ce−cpε2

)n/p(
B

(
p + 1,

n + 1
2

))n/p

.

As

(2r
(n−1)/2
0 h

(n+1)/2
K |Bn−1

2 |)n/p = 1 +
n

p
log[2r

(n−1)/2
0 h

(n+1)/2
K |Bn−1

2 |] ± o(p),
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respectively,(
2r

(n−1)/2
0 h

(n+1)/2
K |Bn−1

2 |
1 + Ce−cpε2

)n/p

= 1 +
n

p
log

[
2r

(n−1)/2
0 h

(n+1)/2
K |Bn−1

2 |
1 + Ce−cpε2

]
± o(p)

we get, together with Lemma 4.3(i),
hn

Zp(K)

hn
K

� 1 − n(n + 1)
2p

log p +
n

p
log

[
2r

(n−1)/2
0 h

(n+1)/2
K |Bn−1

2 |Γ
(

n + 1
2

)]
± o(p)

� 1 − n(n + 1)
2p

log p +
n

2p
log[4rn−1

0 πn−1hn+1
K ] ± o(p), (4.3)

respectively,

hn
Zp(K)

hn
K

� 1 − n(n + 1)
2p

log p +
n

p
log

[
2r

(n−1)/2
0 h

(n+1)/2
K |Bn−1

2 |Γ((n + 1)/2)
1 + Ce−cpε2

]
± o(p) (4.4)

� 1 − n(n + 1)
2p

log p +
n

2p
log

[
4rn−1

0 πn−1hn+1
K

(1 + Ce−cpε2)2

]
± o(p). (4.5)

Now note that there is α > 0 such that

Bn
2 (0, α) ⊂ K ⊂ Bn

2

(
0,

1
α

)
.

This implies that, for all u ∈ Sn−1, α � hK � 1/α. Moreover, we can choose α so small that
we have, for all p � p0 > 1,

Bn
2 (0, α) ⊂ Zp(K) ⊂ K ⊂ Bn

2

(
0,

1
α

)
,

which implies that, for all u ∈ Sn−1, for all p � p0,

α � hZp(K) � 1
α

. (4.6)

On the one hand, as Zp(K) ⊂ K,

p

log(p)
1

hZp(K)(u)n

(
1 − hZp(K)(u)n

hK(u)n

)
� 0.

On the other hand, we get, by (4.3), (4.4) and (4.6) with a constant c,

p

log(p)
1

hZp(K)(u)n

(
1 − hZp(K)(u)n

hK(u)n

)
� cn

αn

(
n + 1 − 1

log p
log

(
4rn−1

0 πn−1hn+1
K

))

� cn

αn

(
n + 1 +

1
log p0

∣∣∣∣log
(

4rn−1
0 πn−1

αn+1

)∣∣∣∣
)

,

respectively,

p

log(p)
1

hZp(K)(u)n

(
1 − hZp(K)(u)n

hK(u)n

)
� cn

αn

(
n + 1 − 1

log p
log

(
4rn−1

0 πn−1hn+1
K

(1 + Ce−cpε2)2

))

� cn

αn

(
n + 1 +

1
log p0

∣∣∣∣log
(

4rn−1
0 πn−1

αn+1

)∣∣∣∣
)

.

The right-hand side is a constant and hence integrable.
(ii) As K is in C2

+, there is R � r0 > 0 such that, for all x ∈ ∂K, K ⊂ Bn
2 (x − RN(x), R).

Then we show similarly to (4.2) that

hZp
(u)n � hn

K(2(n−1)/2|Bn−1
2 |h(n+1)/2

K R(n−1)/2)n/p

(∫1

0

wp(1 − w)(n−1)/2 dw

)n/p

,



Page 22 of 34 GRIGORIS PAOURIS AND ELISABETH M. WERNER

and thus, similar to (4.3),

hn
Zp(K)

hn
K

� 1 − n(n + 1)
2p

log p +
n

2p
log[2n+1Rn−1πn−1hn−1

K ] ± o(p).

Hence, together with (4.3), respectively, (4.4)

− n

2hZp(K)n

log[2n+1Rn−1πn−1hn−1
K ] ± O(p)

� p

hZp(K)(u)n

(
1 − hZp(K)(u)n

hK(u)n
− n(n + 1)

2
log(p)

p

hZp(K)(u)n

hK(u)n

)

� − n

2hZp(K)n

log[4rn−1
0 πn−1hn+1

K ] ± O(p),

respectively,

− n

2hZp(K)n

log[2n+1Rn−1πn−1hn−1
K ] ± O(p)

� p

hZp(K)(u)n

(
1 − hZp(K)(u)n

hK(u)n
− n(n + 1)

2
log(p)

p

hZp(K)(u)n

hK(u)n

)

� − n

2hZp(K)n

log
[
4rn−1

0 πn−1hn+1
K

(1 + Ce−cpε2)2

]
± O(p).

Hence, using (4.6), we get, with an absolute constant c for all p � p0,∣∣∣∣ p

hZp(K)(u)n

(
1 − hZp(K)(u)n

hK(u)n
− n(n + 1)

2
log(p)

p

hZp(K)(u)n

hK(u)n

)∣∣∣∣
� cn

αn

∣∣∣∣log
[
2n+1Rn−1πn−1

αn−1

]∣∣∣∣ .
Again, the right-hand side is a constant and therefore integrable.

As K ∈ C2
+, the indicatrix of Dupin at every x ∈ ∂K is an ellipsoid. Since the quantities

considered in Theorem 4.1 are affine invariant, we can assume that the indicatrix is a Euclidean
ball. We have (see [49]) the following lemma.

Lemma 4.8. Let K ⊂ R
n be a convex body in C2

+. We assume that the indicatrix of
Dupin at x ∈ ∂K is a Euclidean ball. Let r = r(x) = κ(x)−1/(n−1) and put u = NK(x). Let
B(x − ru, r) be the Euclidean ball with center at x − ru and radius r. Then, for every ε > 0,
there exists Δε > 0 such that, for all Δ � Δε,

B(x − (1 − ε)ru, (1 − ε)r) ∩ H(x − Δu, u)−

⊂ K ∩ H(x − Δu, u)− ⊂ B(x − (1 + ε)ru, (1 + ε)r) ∩ H(x − Δu, u)−.

Here H(x − Δu, u) is the hyperplane with normal u through x − Δu and H(x − Δu, u)−

is the half space determined by this hyperplane into which u points.

Proof of Theorem 4.1. (i)

|Z◦
p (K)| − |K◦| =

1
n

∫
Sn−1

(
1

hn
Zp(K)(u)

− 1
hn

K(u)

)
dσ(u).
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Hence,

lim
p→∞

p

log p
(|(Z◦

p (K))| − |K◦|) =
1
n

lim
p→∞

p

log p

∫
Sn−1

1
hn

Zp(K)(u)

(
1 −

hn
Zp(K)(u)

hn
K(u)

)
dσ(u)

=
1
n

∫
Sn−1

lim
p→∞

p

log p

1
hn

Zp(K)(u)

(
1 −

hn
Zp(K)(u)

hn
K(u)

)
dσ(u),

where we have used Lemma 4.7(i) and Lebesgue’s theorem to interchange integration and
limit. Let u ∈ Sn−1. Let x ∈ ∂K be such that NK(x) = u. As K is in C2

+, κ = κK(x) > 0 and
we can assume that the indicatrix of Dupin at x is a Euclidean ball with radius r = r(x) =
κ(x)−1/(n−1).

hn
Zp(K)(u) =

(∫
K

|〈y, u〉|p dy

)n/p

=

(
2

∫hK(u)

0

tp|{y ∈ K : 〈u, y〉 = t}| dt

)n/p

�
(

2
∫hK(u)

(1−ε)(hK(u)−Δε)

tp|{y ∈ K : 〈u, y〉 = t}| dt

)n/p

�
(

2
∫hK(u)

(1−ε)(hK(u)−Δε)

tp|{y ∈ B(x − (1 − ε)ru, (1 − ε)r) : 〈u, y〉 = t}| dt

)n/p

,

where we have applied Lemma 4.8. In addition, we also choose Δε of Lemma 4.8 so that
Δε � min{ε, (1 − ε)r}.

B(x − (1 − ε)ru, (1 − ε)r) ∩ {y ∈ R
n : 〈u, y〉 = t} is an (n − 1)-dimensional Euclidean ball

with radius (
2(1 − ε)r(hK(u) − t)

[
1 − hK(u) − t

2(1 − ε)r

])1/2

,

which, by choice of Δε, is larger than or equal to(
2(1 − ε)r(hK(u) − t)

[
1 − ε(hK(u) + 1 − ε)

2(1 − ε)r

])1/2

.

Hence,

hn
Zp(K)(u) =

(∫
K

|〈y, u〉|p dy

)n/p

�
(

2|Bn−1
2 |[2(1 − ε)rhK(u)](n−1)/2

[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r](n−1)/2

)n/p

×
(∫hK(u)

(1−ε)(hK(u)−Δε)

tp
(

1 − t

hK(u)

)(n−1)/2

dt

)n/p

=
( |Bn−1

2 |((1 − ε)r)(n−1)/2[2hK(u)](n+1)/2

[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r](n−1)/2

)n/p

hK(u)n

×
(∫1

(1−ε)(1−Δε/hK(u))

vp(1 − v)(n−1)/2 dv

)n/p

.

Now we apply Lemma 4.4 to the function f(v) = (1 − v)(n−1)/2. We see that f is C2 and
vp = 1/(1 + (n − 1)/2p). Thus, Lemma 4.4 holds. We see that vp of Lemma 4.4 is an increasing
function of p and limp→∞ vp = 1. Hence, for ε > 0 given, there exists pε = pε,Δε

, namely, pε �
(n − 1)(hK(u) − Δε)/2Δε, such that, for all p � pε, vp � (hK(u) − Δε)/hK(u). In addition, we
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also choose pε so large that pε � 1/ε3. Thus,

hn
Zp(K)(u)

hn
K(u)

�
( |Bn−1

2 |((1 − ε)r)(n−1)/2[2hK(u)](n+1)/2

(1 + Ce−c/ε)[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r](n−1)/2

)n/p

×
(∫1

0

vp(1 − v)(n−1)/2 dv

)n/p

.

Now( |Bn−1
2 |((1 − ε)r)(n−1)/2[2hK(u)](n+1)/2

(1 + Ce−c/ε)[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r](n−1)/2

)n/p

= 1 +
n

p
log

( |Bn−1
2 |((1 − ε)r)(n−1)/2[2hK(u)](n+1)/2

(1 + Ce−c/ε)[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r](n−1)/2

)

+
1
2

(
n

p
log

( |Bn−1
2 |((1 − ε)r)(n−1)/2[2hK(u)](n+1)/2

(1 + Ce−c/ε)[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r](n−1)/2

))2

± o(p2). (4.7)

Together with Lemma 4.3(ii) (for a = 0), we then get the following: For ε > 0 given, there
exists pε such that for all p � pε

hn
Zp(K)(u)

hn
K(u)

� 1 − n(n + 1)
2p

log p

+
n

2p
log

(
πn−1((1 − ε)r)n−1[2hK(u)]n+1

(1 + Ce−c/ε)2[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r]n−1

)

+
n2(n + 1)2

8p2
(log p)2 − n2(n + 1)

2p2

× log
(

πn−1((1 − ε)r)n−1[2hK(u)]n+1

(1 + Ce−c/ε)2[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r]n−1

)
log p

− n(n + 1)
2p2

[
(n2 + 3n + 6)

4

]

+
n2

2p2

[(
log

(
Γ
(

n + 1
2

)))2

+ 2 log

(
πn−1((1 − ε)r)n−1[2hK(u)]n+1(

1 + Ce−c/ε
)2 [1 − ε(hK(u) + 1 − ε)/2(1 − ε)r]n−1

)]

+
n2

2p2

[(
log

( |Bn−1
2 |((1 − ε)r)(n−1)/2[2hK(u)](n+1)/2

(1 + Ce−c/ε)[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r](n−1)/2

))2
]
± o(p2).

(4.8)

Thus,

p

log p

(
1 −

hn
Zp(K)(u)

hn
K(u)

)

� n(n + 1)
2

− n

2 log p
log

(
πn−1((1 − ε)r)n−1[2hK(u)]n+1(

1 + Ce−c/ε
)2 [1 − ε(hK(u) + 1 − ε)/2(1 − ε)r]n−1

)
± o(p).

(4.9)

On the other hand, by Lemma 4.6, the function f(t) = |K ∩ (u⊥ + tu)| satisfies the
assumptions of Lemma 4.4 and tp is well defined. Also, tp is an increasing function of p and, by
Lemma 4.5, limp→∞ tp = hK(u). Hence, for ε > 0 given, there exists pε = pε,Δε

such that, for
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all p � pε, tp � hK(u) − Δε. In addition, we also choose pε so large so that pε � 1/ε3. Thus,

hn
Zp(K)(u) =

(
2

∫hK(u)

0

tp|{y ∈ K : 〈u, y〉 = t}| dt

)n/p

�
(

2(1 + Ce−cε2p)
∫hK(u)

tp(1−ε)

tp|{y ∈ K : 〈u, y〉 = t}| dt

)n/p

�
(

2(1 + Ce−c/ε)
∫hK(u)

(1−ε)(hK(u)−Δε)

tp|{y ∈ K : 〈u, y〉 = t}| dt

)n/p

�
(

2(1 + Ce−c/ε)
∫hK(u)

(1−ε)(hK(u)−Δε)

tp

× |{y ∈ B(x − (1 + ε)ru, (1 + ε)r) : 〈u, y〉 = t}| dt)n/p
.

In the last inequality, we have used Lemma 4.8. The latter is

�
(

2(1 + Ce−c/ε)
∫hK(u)

0

tp|{y ∈ B(x − (1 + ε)ru, (1 + ε)r) : 〈u, y〉 = t}| dt

)n/p

.

As above, we note that B(x − (1 + ε)ru, (1 + ε)r) ∩ {y ∈ R
n : 〈u, y〉 = t} is a (n − 1)-

dimensional Euclidean ball with radius(
2(1 + ε)r(hK(u) − t)

[
1 − hK(u) − t

2(1 + ε)r

])1/2

,

which is smaller than or equal to

(2(1 + ε)r(hK(u) − t))1/2.

We continue similarly to above and get that there exists (a new) pε (chosen larger than the
ones previously chosen and larger than 1/ε3) such that, for all p � pε,

hn
Zp(K)(u)

hn
K(u)

� 1 − n(n + 1)
2p

log p +
n

2p
log

(
πn−1((1 + ε)r)n−1[2hK(u)]n+1

(1 + Ce−c/ε)−2

)

+
n2(n + 1)2

8p2
(log p)2 − n2(n + 1)

2p2
log

(
πn−1((1 + ε)r)n−1[2hK(u)]n+1

(1 + Ce−c/ε)−2

)
log p

− n(n + 1)
2p2

[
(n2 + 3n + 6)

4

]

+
n2

2p2

[(
log

(
Γ
(

n + 1
2

)))2

+ 2 log
(

πn−1((1 + ε)r)n−1[2hK(u)]n+1

(1 + Ce−c/ε)−2

)]

+
n2

2p2

[(
log

( |Bn−1
2 |((1 + ε)r)(n−1)/2[2hK(u)](n+1)/2

(1 + Ce−c/ε)−1

))]
± o(p2). (4.10)

Thus,

p

log p

(
1 −

hn
Zp(K)(u)

hn
K(u)

)

� n(n + 1)
2

− n

2 log p
log

(
πn−1((1 + ε)r)n−1[2hK(u)]n+1

(1 + Ce−c/ε)−2

)
± o(p). (4.11)
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We see that (4.9) and (4.11) give that

lim
p→∞

p

log p

(
1 −

hn
Zp(K)(u)

hK(u)n

)
=

n(n + 1)
2

.

Hence, also using that, since |K| = 1, hZp(K)(u) → hK(u),

lim
p→∞

p

log p
(|Z◦

p (K)| − |K◦|) =
1
n

∫
Sn−1

lim
p→∞

p

log p

1
hn

Zp(K)(u)

(
1 −

hn
Zp(K)(u)

hn
K(u)

)
dσ(u)

=
1
n

∫
Sn−1

lim
p→∞

1
hn

Zp(K)(u)
lim

p→∞
p

log p

(
1 −

hn
Zp(K)(u)

hn
K(u)

)
dσ(u)

=
n + 1

2

∫
Sn−1

1
hn

K(u)
dσ(u)

=
n(n + 1)

2
|K◦|.

This completes (i).
(ii)

|Z◦
p (K)| − |K◦| − n(n + 1) log p

2p
|K◦|

=
1
n

∫
Sn−1

(
1

hn
Zp(K)(u)

− 1
hn

K(u)
− n(n + 1)

2
log(p)

p

1
hn

K(u)

)
dσ(u)

=
1
n

∫
Sn−1

1
hn

Zp(K)(u)

(
1 −

hn
Zp(K)(u)

hn
K(u)

− n(n + 1)
2

log(p)
p

hn
Zp(K)(u)

hn
K(u)

)
dσ(u).

Hence,

lim
p→∞ p

(
|Z◦

p (K)| − |K◦| − n(n + 1) log p

2p
|K◦|

)

=
1
n

∫
Sn−1

lim
p→∞

p

hn
Zp(K)(u)

(
1 −

hn
Zp(K)(u)

hn
K(u)

− n(n + 1)
2

log(p)
p

hn
Zp(K)(u)

hn
K(u)

)
dσ(u),

where we have used Lemma 4.7(ii) and Lebesgue’s theorem to interchange integration and
limit. By (4.8) we have, for all p � pε,(

1 −
hn

Zp(K)(u)

hn
K(u)

− n(n + 1)
2

log(p)
p

hn
Zp(K)(u)

hn
K(u)

)

� − n

2p
log

(
πn−1((1 − ε)r)n−1[2hK(u)]n+1

(1 + Ce−c/ε)2[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r]n−1

)

+
n2(n + 1)2

8p2
(log p)2 +

n(n + 1)
2p2

[
(n2 + 3n + 6)

4

]
− n2

2p2

[(
log

(
Γ
(

n + 1
2

)))2

+ 2 log
(

πn−1((1 − ε)r)n−1[2hK(u)]n+1

(1 + Ce−c/ε)2[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r]n−1

)]

− n2

2p2

[(
log

( |Bn−1
2 |((1 − ε)r)(n−1)/2[2hK(u)](n+1)/2

(1 + Ce−c/ε)[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r](n−1)/2

))2
]
± o(p2).
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Thus,

p

(
1 −

hn
Zp(K)(u)

hn
K(u)

− n(n + 1)
2

log(p)
p

hn
Zp(K)(u)

hn
K(u)

)

� −n

2
log

(
πn−1((1 − ε)r)n−1[2hK(u)]n+1

(1 + Ce−c/ε)2[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r]n−1

)

+
n2(n + 1)2

8p
(log p)2 +

n(n + 1)
2p

[
(n2 + 3n + 6)

4

]
− n2

2p

[(
log

(
Γ
(

n + 1
2

)))2

+ 2 log

(
πn−1((1 − ε)r)n−1 [2hK(u)]n+1

(1 + Ce−c/ε)2[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r]n−1

)]

− n2

2p

[(
log

( |Bn−1
2 |((1 − ε)r)(n−1)/2[2hK(u)](n+1)/2

(1 + Ce−c/ε)[1 − ε(hK(u) + 1 − ε)/2(1 − ε)r](n−1)/2

))2
]
± o(p). (4.12)

Similarly, using (4.10), we get, for all p � pε,

p

(
1 −

hn
Zp(K)(u)

hn
K(u)

− n(n + 1)
2

log(p)
p

hn
Zp(K)(u)

hn
K(u)

)

� −n

2
log

(
πn−1((1 + ε)r)n−1[2hK(u)]n+1

(1 + Ce−c/ε)−2

)
+

n2(n + 1)2

8p
(log p)2

+
n(n + 1)

2p

[
(n2 + 3n + 6)

4

]

− n2

2p

[(
log

(
Γ
(

n + 1
2

)))2

+ 2 log

(
πn−1((1 + ε)r)n−1 [2hK(u)]n+1

(1 + Ce−c/ε)−2

)]

− n2

2p

[(
log

( |Bn−1
2 |((1 + ε)r)(n−1)/2[2hK(u)](n+1)/2

(1 + Ce−c/ε)−1

))2
]
± o(p). (4.13)

We see that (4.12) and (4.13) give that

lim
p→∞ p

(
1 −

hn
Zp(K)(u)

hn
K(u)

− n(n + 1)
2

log(p)
p

hn
Zp(K)(u)

hn
K(u)

)
= −n

2
log(πn−1rn−1[2hK(u)]n+1).

The limit limp→∞ p(|Z◦
p (K)| − |K◦| − (n(n + 1)/2p) log p|Z◦

p (K)|) is computed similarly.

5. Applications

The fact that ΩK can be expressed in different ways allows us to compute the integral in the
next proposition. This integral is the relative entropy of the (not normalized) cone measures
of the lnr -unit ball and its polar.

Proposition 5.1. Let 1 < r < ∞ and let Bn
r be the lnr -unit ball and let (Bn−1

r )+ be the
set of all vectors in Bn−1

r having non-negative coordinates. Then

∫
(Bn−1

r )+

n−1∏
i=1

|xi|r−2 log

[
(r − 1)n−1

n∏
i=1

|xi|r−2

]
x−1

n dx1 . . . dxn−1

=
n

rn−1

(Γ((r − 1)/r))n

Γ(n(r − 1)/r)

[
n(r − 2)

r

(
Γ′((r − 1)/r)
Γ((r − 1)/r)

− Γ′(n(r − 1)/r)
Γ(n(r − 1)/r)

)
+ (n − 1) log r

]
.
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Proof. In Chapter 3, it was shown that

log ΩK = − n

as∞(K)

∫
∂K

κK(x)
〈x,NK(x)〉n log

κK(x)
〈x,NK(x)〉n+1

dμK(x).

We apply this formula to K = Bn
r , 1 < r < ∞. It was also shown in Chapter 3 that

log ΩBn
r

= −n

[
n(r − 2)

r

(
Γ′((r − 1)/r)
Γ((r − 1)/r)

− Γ′(n(r − 1)/r)
Γ(n(r − 1)/r)

)
+ (n − 1) log r

]
.

The curvature at a boundary point of Bn
r is (see [51])

κ(x) =
(r − 1)n−1

∏n
i=1 |xi|r−2

(
∑n

i=1 |xi|2r−2)(n+1)/2
,

and the normal is (see [51])

N∂Bn
r
(x) =

(sgn(x1)|x1|r−1, . . . , sgn(xn)|xn|r−1)
(
∑n

i=1 |xi|2r−2)1/2
.

Thus, we get, where Bn
r′ is the polar of Bn

r , that is, r′ is the conjugate exponent of r,

n

[
n(r − 2)

r

(
Γ′((r − 1)/r)
Γ((r − 1)/r)

− Γ′(n(r − 1)/r)
Γ(n(r − 1)/r)

)
+ (n − 1) log r

]
|Bn

r′ |

=
∫
∂Bn

r

(r − 1)n−1
∏n

i=1 |xi|r−2

(
∑n

i=1 |xi|2r−2)1/2
log

[
(r − 1)n−1

n∏
i=1

|xi|r−2

]
dμ∂Bn

r
(x).

Now we integrate with respect to the variables x1, . . . , xn−1. The volume of a surface element in
the plane of the first n − 1 coordinates equals the volume of the corresponding surface element
on ∂Bn

r times

|〈en, N∂Bn
r
(x)〉| =

|xn|r−1

(
∑n

i=1 |xi|2r−2)1/2
.

Thus, with (Bn−1
r )+ being the set of all vectors in Bn−1

r having non-negative coordinates,

2n(r − 1)n−1

∫
(Bn−1

r )+

n∏
i=1

|xi|r−2 log

[
(r − 1)n−1

n∏
i=1

|xi|r−2

]
x1−r

n dx1 . . . dxn−1

= 2n(r − 1)n−1

∫
(Bn−1

r )+

n−1∏
i=1

|xi|r−2 log

[
(r − 1)n−1

n∏
i=1

|xi|r−2

]
x−1

n dx1 . . . dxn−1

= 2n(r − 1)n−1 n

rn−1

(Γ((r − 1)/r))n

Γ(n(r − 1)/r)

×
[
n(r − 2)

r

(
Γ′((r − 1)/r)
Γ((r − 1)/r)

− Γ′(n(r − 1)/r)
Γ(n(r − 1)/r)

)
+ (n − 1) log r

]
,

where we have also used that

|Bn
r′ | =

2n(r − 1)n−1

nrn−1

(Γ((r − 1)/r))n

Γ(n(r − 1)/r)
.

There are still other ways how ΩK can be expressed. Similarly to Theorem 4.1, ΩK appears
in the asymptotic behavior of the volume of certain surface bodies and illumination surface
bodies [57]. We show the result for the surface bodies. For the illumination surface bodies it
is done similarly.

The surface bodies, a variant of floating bodies, were introduced in [50, 51] as follows.
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Definition 5.2. Let s � 0 and f : ∂K → R be a non-negative, integrable function. The
surface body Kf,s is the intersection of all the closed half-spaces H+ whose defining hyperplanes
H cut off a set of fμK-measure less than or equal to s from ∂K. More precisely,

Kf,s =
⋂

∫
∂K∩H− f dμK�s

H+.

Proposition 5.3. Let K be a symmetric convex body in R
n that is in C2

+. Then

dn lim
s→0

|K| − |Kf,s|
s2/(n−1)

=
∫
∂K

κ(x)
〈x,N(x)〉n log

(
κ(x)

〈x,N(x)〉n+1

)
dμ(x) = |K◦| log

1
ΩK

,

where Kf,s is the surface body of K for the function

f =
〈x,NK(x)〉n(n−1)/2

κ(n−2)/2

(
log

(
κ

〈x,NK(x)〉n+1

))−(n−1)/2

,

and where dn = 2(|Bn−1
2 |)2/(n−1).

Proof. The proof follows immediately from the following formula which was proved in
[51, Theorem 14]:

dn lim
s→0

|K| − |Kf,s|
s2/(n−1)

=
∫
∂K

κ1/(n−1)

f2/(n−1)
dμ∂K .

Appendix. Calculations with Γ-functions

For x, y > 0, Γ(x) :=
∫∞
0

λx−1e−λ dλ is the Gamma function and B(x, y) :=
∫1

0
λx−1

(1 − λ)y−1 dλ = Γ(x)Γ(y)/Γ(x + y) is the Beta function.
Recall that we write f(p) = g(p) ± o(p), if there exists a function h(p) such that f(p) =

g(p) + h(p) and limp→∞ ph(p) = 0 and, similarly, f(p) = g(p) ± o(p2), if there exists a function
h(p) such that f(p) = g(p) + h(p) and limp→∞ p2h(p) = 0.

We shall frequently use the following: For x → ∞,

Γ(x) =
√

2πxx−1/2e−x

[
1 +

1
12x

+
1

288x2
± o(x2)

]
. (A.1)

For every z, w > 0,

z1/p = 1 +
log z

p
+

(log z)2

2p2
± o(p2)

and

(p + z)w/p = 1 +
w

p
log p +

w2(log z)2

2p2
+

wz

p2
± o(p2).

Note that if f(p)2 = o(p), then (1 + f(p))(1 − f(p)) = 1 ± o(p), which means that

1
1 + f(p)

= 1 − f(p) ± o(p).

Also
a

p + b
=

a

p
− ab

p2
± o(p2).
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Proof of Lemma 4.3. (i) We use (A.1) and get

(
B

(
p + 1,

n + 1
2

))n/p

=
(

Γ(p + 1)
Γ(p + 1 + (n + 1)/2)

Γ
(

n + 1
2

))n/p

=

⎛
⎜⎜⎝

Γ((n + 1)/2)e(n+1)/2(p + 1)p+1/2[
1 + 1/12(p + 1) + 1/288(p + 1)2 ± o(p2)

]
(p + 1 + (n + 1)/2)p+1+n/2 [1 + 1/12(p + 1 + (n + 1)/2)

+1/288(p + 1 + (n + 1)/2)2 ± o(p2)
]

⎞
⎟⎟⎠

n/p

=
(

Γ
(

n + 1
2

)
e(n+1)/2

)n/p(
p + 1

p + 1 + (n + 1)/2

)(n/p)(p+1/2)

×
(

1
p + 1 + (n + 1)/2

)n(n+1)/2p

×
(

1 + 1/12(p + 1) + 1/288(p + 1)2 ± o(p2)
1 + 1/12(p + 1 + (n + 1)/2) + 1/288(p + 1 + (n + 1)/2)2 ± o(p2)

)n/p

.

Note that

(
1 + 1/12(p + 1) + 1/288(p + 1)2 ± o(p2)

1 + 1/12(p + 1 + (n + 1)/2) + 1/288(p + 1 + (n + 1)/2)2 ± o(p2)

)n/p

= 1 ± o(p2).

Also

(
Γ
(

n + 1
2

)
e(n+1)/2

)n/p

= 1 +
n

p

[
n + 1

2
+ log

(
Γ
(

n + 1
2

))]

+
n2

2p2

[
n + 1

2
+ log

(
Γ
(

n + 1
2

))]2

± o(p2),

(
1

1 + (n + 1)/2(p + 1)

)n(1+1/2p)

=
(

1
1 + (n + 1)/2(p + 1)

)n

e−(n/2p) log(1+(n+1)/(2p+2))

= 1 − n(n + 1)
2p

+
n(3 + 5n + 3n2 + n3)

8p2
± o(p2)

and

(
1

p + 1 + (n + 1)/2

)n(n+1)/2p

= e−(n(n+1)/2p) log(p+(n+3)/2)

= 1 − n(n + 1)
2p

log p +
n2(n + 1)2

8p2
(log p)2 − n(n + 1)(n + 3)

4p2
± o(p2).
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Hence,(
B

(
p + 1,

n + 1
2

))n/p

=
(
1 ± o(p2)

)
×
(

1 +
n

p

[
n + 1

2
+ log

(
Γ
(

n + 1
2

))]

+
n2

2p2

[
n + 1

2
+ log

(
Γ
(

n + 1
2

))]2

± o(p2)

)

×
(

1 − n(n + 1)
2p

+
n(3 + 5n + 3n2 + n3)

8p2
± o(p2)

)

×
(

1 − n(n + 1)
2p

log p +
n2(n + 1)2

8p2
(log p)2

− n(n + 1)(n + 3)
4p2

± o(p2)
)

= 1 − n(n + 1)
2p

log p +
n

p
log

(
Γ
(

n + 1
2

))
+

n2(n + 1)2

8p2
(log p)2

− n2(n + 1)
2p2

log
(

Γ
(

n + 1
2

))
log p

+
n

2p2

[
n

(
log

(
Γ
(

n + 1
2

)))2

− n + 1
4

(n(n + 1) + 2(n + 3))
]
± o(p2).

(ii)(∫1

0

up(1 − u)(n−1)/2(1 − a(1 − u))(n−1)/2 du

)n/p

=

(∫1

0

up(1 − u)(n−1)/2

[
1 −

(n − 1
2
1

)
a(1 − u) +

(n − 1
2
2

)
a2(1 − u)2 ± . . .

]
du

)n/p

=
(

B

(
p + 1,

n + 1
2

))n/p
[
1 −

(n − 1
2
1

)
aB3

+

(
n − 1

2
2

)
a2B5 −

(
n − 1

2
3

)
a3B7 ± . . .

]n/p

=
(

B

(
p + 1,

n + 1
2

))n/p

exp

{
n

p
log

[
1 −

(
n − 1

2
1

)
aB3 +

(
n − 1

2
2

)
a2B5 ± . . .

]}

=
(

B

(
p + 1,

n + 1
2

))n/p

×
⎡
⎣1 − n

p

⎧⎨
⎩
(

n − 1
2
1

)
aB3 −

(
n − 1

2
2

)
a2B5 +

1
2

((
n − 1

2
1

))2

a2B2
3 ± . . .

⎫⎬
⎭ . . .

⎤
⎦ ,

where, for 3 � k � n − 2 and for a constant c,

Bk =
B(p + 1, (n + k)/2)
B(p + 1, (n + 1)/2)

=
Γ((n + k)/2)
Γ((n + 1)/2)

1
p(k−1)/2

(
1 +

c

p
± o(p)

)
.



Page 32 of 34 GRIGORIS PAOURIS AND ELISABETH M. WERNER

Hence, together with (i),(∫1

0

up(1 − u)(n−1)/2 (1 − a (1 − u))(n−1)/2
du

)n/p

= 1 − n(n + 1)
2p

log p

+
n

p
log

(
Γ
(

n + 1
2

))
+

n2(n + 1)2

8p2
(log p)2 − n2(n + 1)

2p2
log

(
Γ
(

n + 1
2

))
log p

+
n

2p2

[
n

(
log

(
Γ
(

n + 1
2

)))2

− (n + 1)(n2 + 3n + 6)
4

− 2

(
n − 1

2
1

)
a
Γ((n + 3)/2)
Γ((n + 1)/2)

]

+
n

2p2

[
n

(
log

(
Γ
(

n + 1
2

)))2

− (n + 1)(n2 + 3n + 6)
4

− (n + 1)

(
n − 1

2
1

)
a

]

± o(p2).
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51. C. Schütt and E. Werner, ‘Surface bodies and p-affine surface area’, Adv. Math. 187 (2004) 98–145.

52. A. Stancu, ‘The discrete planar L0-Minkowski problem’, Adv. Math. 167 (2002) 160–174.

53. A. Stancu, ‘On the number of solutions to the discrete two-dimensional L0-Minkowski problem’, Adv.
Math. 180 (2003) 290–323.

54. N. S. Trudinger and X. Wang, ‘The affine Plateau problem’, J. Amer. Math. Soc. 18 (2005) 253–289.

55. X. Wang, ‘Affine maximal hypersurfaces’, Proceedings of the International Congress of Mathematicians,
vol. III, Beijing (2002) 221–231.



Page 34 of 34 CONE MEASURES AND Lp CENTROID BODIES

56. E. Werner and D. Ye, ‘New Lp affine isoperimetric inequalities’, Adv. Math. 218 (2008) 762–780.
57. E. Werner and D. Ye, ‘Inequalities for mixed p-affine surface area’, Math. Annalen 347 (2010) 703–737.

Grigoris Paouris
Department of Mathematics
Texas A & M University
College Station, TX 77843
USA

grigoris@math.tamu.edu

Elisabeth Werner
Department of Mathematics
Case Western Reserve University
Cleveland, Ohio 44106
USA

elisabeth·werner@case·edu

and
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