On the approximation of a polytope by its dual L_p -centroid bodies *

Grigoris Paouris[†] and Elisabeth M. Werner [‡]

Abstract

We show that the rate of convergence on the approximation of volumes of a convex symmetric polytope $P \in \mathbb{R}^n$ by its dual L_p -centroid bodies is independent of the geometry of P. In particular we show that if P has volume 1,

$$\lim_{p\to\infty}\frac{p}{\log p}\left(\frac{|Z_p^\circ(P)|}{|P^\circ|}-1\right)=n^2.$$

We provide an application to the approximation of polytopes by uniformly convex sets.

1 Introduction

Let K be a convex body in \mathbb{R}^n of volume 1 and, for $\delta \in (0,1)$, let K_δ be the convex floating body of K [22]. It is the intersection of all halfspaces H^+ whose defining hyperplanes H cut off a set of volume δ from K. Note that K_δ converges to K in the Hausdorff metric as $\delta \to 0$. C. Schütt and the second name author showed an exact formula for the convergence of volumes [22],

$$\lim_{\delta \to 0} \frac{|K| - |K_{\delta}|}{\delta^{\frac{2}{n+1}}} = \operatorname{as}_1(K),$$

which involves the affine surface area of K, as₁(K). The same phenomenon (and similar formulas) has been observed for other types of approximation using instead of floating bodies, convolution bodies [21], illumination bodies [27] or Santaló bodies [18]. We refer to e.g. [2], [4]-[9], [12]-[17], [23]-[26], [28]-[30] for further details, extensions and applications. Another family of bodies that approximate a given

^{*}Keywords: centroid bodies, floating bodies, polytopes, L_p Brunn Minkowski theory. 2000 Mathematics Subject Classification: 52A20, 53A15

[†]Partially supported by an NSF grant (DMS-0906150)

[‡]Partially supported by an NSF grant, a FRG-NSF grant and a BSF grant

convex body K are the L_p -centroid bodies of K introduced by Lutwak and Zhang [17]. For a symmetric convex body K of volume 1 in \mathbb{R}^n and $1 \leq p \leq n$, the L_p -centroid body $Z_p(K)$ is the convex body that has support function

$$h_{Z_p(K)}(\theta) = \left(\int_K |\langle x, \theta \rangle|^p dx\right)^{\frac{1}{p}}, \ \theta \in S^{n-1}.$$

Note that $Z_p(K)$ converges to K in the Hausdorff metric as $p \to \infty$. It has been shown in [19] that the family of L_p -centroid bodies is isomorphic to the family of the floating bodies: K_δ is isomorphic to $Z_{\log \frac{1}{\delta}}(K)$. However, it was proved in [19] that in the case of C_+^2 bodies, the convergence of volume of the L_p -centroid bodies is independent of the "geometry" of K: For any symmetric convex body in \mathbb{R}^n of volume 1 that is C_+^2 (i.e. K has C^2 boundary with everywhere strictly positive Gaussian curvature),

$$\lim_{p\to\infty}\frac{p}{\log p}\left(|Z_p^\circ(K)|-|K^\circ|\right)=\frac{n(n+1)}{2}|K^\circ|.$$

In this work we show that the same phenomenon occurs also in the case of polytopes. We show the following

Theorem 1.1. Let K be a symmetric polytope of volume 1 in \mathbb{R}^n . Then

$$\lim_{p \to \infty} \frac{p}{\log p} \left(|Z_p^{\circ}(K)| - |K^{\circ}| \right) = n^2 |K^{\circ}|.$$

As an application of this result we get bounds for the approximation of a polytope by a uniformly convex body with respect to the symmetric difference metric:

Theorem 1.2. Let P be a symmetric polytope in \mathbb{R}^n . Then there exists $p_0 = p_0(P)$ such that for every $p \ge p_0$, there exists a p-uniformly convex body K_p such that

$$d_s(P, K_p) \leqslant 2n^2 |P| \frac{\log p}{p},$$

where d_s is the symmetric difference metric.

The statements and proofs are for symmetric convex bodies only. If K is not symmetric, then $Z_p(K)$ does not converge to K since the $Z_p(K)$ are centrally symmetric by definition. However, all results can be extended to the non-symmetric case with minor modifications of the proofs by using the non-symmetric version of the L_p -centroid bodies from [12] (see also [6]).

The paper is organized as follows. In section 2 we give some bounds for the approximation of volume in the case of a general convex body. In section 3 we consider the case of polytopes and we give the proof of Theorem 1.1. Finally, in section 4, we discuss approximation of a polytope by p-uniformly convex bodies (see [11]) and we give the proof of Theorem 1.2.

Notation.

We work in \mathbb{R}^n , which is equipped with a Euclidean structure $\langle \cdot, \cdot \rangle$. We denote by $\|\cdot\|_2$ the corresponding Euclidean norm, and write B_2^n for the Euclidean unit ball and S^{n-1} for the unit sphere. Volume is denoted by $|\cdot|$. We write σ for the rotationally invariant surface measure on S^{n-1} .

A convex body is a compact convex subset C of \mathbb{R}^n with non-empty interior. We say that C is symmetric, if $x \in C$ implies that $-x \in C$. We say that C has center of mass at the origin if $\int_C \langle x, \theta \rangle dx = 0$ for every $\theta \in S^{n-1}$. The support function $h_C : \mathbb{R}^n \to \mathbb{R}$ of C is defined by $h_C(x) = \max\{\langle x, y \rangle : y \in C\}$. $C^{\circ} = \{y \in \mathbb{R}^n : \langle x, y \rangle \leq 1 \text{ for all } x \in C\}$ is the polar body of C.

We refer to [1] and [20] for basic facts from the Brunn-Minkowski theory.

Acknowledgments. The authors would like to thank the American Institute of Mathematics. Part of this work has been carried out during a stay at AIM.

2 General Bounds

Let K be a symmetric convex body in \mathbb{R}^n of volume 1. Let $\theta \in S^{n-1}$. We define the parallel section function $f_{K,\theta}: [-h_k(\theta), h_k(\theta)] \to \mathbb{R}_+$ by

$$f_{K,\theta}(t) := |K \cap (\theta^{\perp} + t\theta)|.$$

By Brunn's principle, $f_{K,\theta}^{\frac{1}{n-1}}$ is concave and attains its maximum at 0. So we have that

$$\left(1 - \frac{t}{h_K(\theta)}\right)^{n-1} f_{K,\theta}(0) \leqslant f_{K,\theta}(t) \leqslant f_{K,\theta}(0).$$
(1)

The right-hand side inequality is sharp if and only if K is a cylinder in the direction of θ and the left-hand side inequality is sharp if and only if K is a double cone in the direction of θ .

The next proposition is well known. There, for x,y>0, $B(x,y)=\int_0^1\lambda^{x-1}(1-\lambda)^{y-1}d\lambda=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$ is the Beta function and $\Gamma(x)=\int_0^\infty\lambda^{x-1}e^{-\lambda}d\lambda$ is the Gamma function.

Proposition 2.1. Let K be a symmetric convex body in \mathbb{R}^n of volume 1. Let $1 \leq p < \infty$ and $\theta \in S^{n-1}$. Then

$$B(p+1,n)^{\frac{1}{p}} \leqslant \frac{h_{Z_p(K)}(\theta)}{h_K(\theta)} \leqslant \left(\frac{n}{p+1}\right)^{\frac{1}{p}}.$$

Proof. As |K| = 1,

$$\frac{2}{n}h_K(\theta)f_{K,\theta}(0) \leqslant 1 \leqslant 2h_K(\theta)f_{K,\theta}(0).$$

Hence, on the one hand, with (1),

$$h_{Z_{p}(K)}^{p}(\theta) = 2 \int_{0}^{h_{K}(\theta)} t^{p} f_{K,\theta}(t) dt \leq 2 f_{K,\theta}(0) \int_{0}^{h_{K}(\theta)} t^{p} dt$$
$$= \frac{2}{p+1} f_{K,\theta}(0) h_{K}^{p+1}(\theta) \leq \frac{n}{p+1} h_{K}^{p}(\theta).$$

On the other hand, also with with (1),

$$h_{Z_p(K)}^p(\theta) = 2\int_0^{h_K(\theta)} t^p f_{K,\theta}(t) dt \geqslant 2f_{K,\theta}(0) \int_0^{h_K(\theta)} t^p \left(1 - \frac{t}{h_K(\theta)}\right)^{n-1} dt$$
$$= 2f_{K,\theta}(0) h_K^{p+1}(\theta) \int_0^1 s^p (1-s)^{n-1} ds \geqslant B(p+1,n) h_K^p(\theta).$$

The proof is complete.

As it was mentioned in the introduction, it was proved in [19] that if K is a C_+^2 symmetric convex body of volume 1, then

$$\lim_{p \to \infty} \frac{p}{\log p} \left(|Z_p^{\circ}(K)| - |K^{\circ}| \right) = \frac{n(n+1)}{2} |K^{\circ}|.$$

Before we consider the case of polytopes, we show that for every convex body we have that $|Z_p^{\circ}(K)| - |K^{\circ}| = O(\frac{p}{\log p})$. In particular, the following proposition holds.

Proposition 2.2. Let K be a symmetric convex body in \mathbb{R}^n of volume 1. Then

$$n|K^{\circ}| \leqslant \lim_{p \to \infty} \frac{p}{\log p} \left(|Z_p^{\circ}(K)| - |K^{\circ}| \right) \leqslant n^2 |K^{\circ}|.$$

Proof. We have that

$$\begin{split} |Z_p^\circ(K)| - |K^\circ| &= \frac{1}{n} \int_{S^{n-1}} \frac{1}{h_{Z_p(K)}^n(\theta)} - \frac{1}{h_K^n(\theta)} d\sigma(\theta) \\ &= \frac{1}{n} \int_{S^{n-1}} \frac{1}{h_K^n(\theta)} \left(\frac{h_K^n(\theta)}{h_{Z_p(K)}^n(\theta)} - 1 \right) d\sigma(\theta), \end{split}$$

where σ is the usual surface area measure on S^{n-1} . By Proposition 2.1,

$$\frac{h_K^n(\theta)}{h_{Z_n(K)}^n(\theta)} \geqslant \left(\frac{n}{p+1}\right)^{-\frac{n}{p}} = 1 + \frac{n\log p}{p} \pm o(\frac{p}{\log p})$$

and

$$\frac{h_K^n(\theta)}{h_{Z_p(K)}^n(\theta)} \leqslant B(p+1,n)^{-\frac{n}{p}} = 1 + \frac{n^2 \log p}{p} \pm o(\frac{p}{\log p}).$$

For the last equality see e.g. [19], Lemma 4.3 - which is also stated here as Lemma 3.3. Lebesgue's convergence theorem completes the proof.

3 Polytopes

Let K be a convex polytope in \mathbb{R}^n with vertices v_1, \ldots, v_M . For $0 \le k \le n-1$, let $\mathcal{A}_k = \{F_k : F_k \text{ is a k-dimensional face of } K\}$. For $\theta \in S^{n-1}$ and $0 \le s \le h_k(\theta)$ let

$$g(\theta, s) = \operatorname{card} (\{v_i : v_i \in K \cap \{\langle v_i, \theta \rangle \geq s\}).$$

Let

$$\mathcal{B}_K = \{ \theta \in S^{n-1} : \forall \ s \le h_K(\theta) : g(\theta, s) > 1 \}$$
 (2)

and

$$\mathcal{G}_K = \{ \theta \in S^{n-1} : \exists \ s < h_K(\theta) : g(\theta, s) = 1 \}$$

$$\tag{3}$$

Finally, for $\theta \in \mathcal{G}_K$, let

$$s_{\theta} = \min\{s > 0 : g(\theta, s) = 1\} \tag{4}$$

Remarks. Let $\theta \in \mathcal{G}_K$.

(i) Then there is a vertex v_i such that for all $s_{\theta} \leq s \leq h_K(\theta)$

$$\{x \in K : \langle x, \theta \rangle \ge s\} = \operatorname{co}[K \cap (\theta^{\perp} + s\theta), v_i]$$

(ii) Recall that $f_{K,\theta}(s) = |K \cap (\theta^{\perp} + s\theta)|$. We have for all $s_{\theta} \leq s \leq h_K(\theta)$

$$f_{K,\theta}(s) = f_{K,\theta}(s_{\theta}) \left(\frac{1 - \frac{s}{h_K(\theta)}}{1 - \frac{s_{\theta}}{h_K(\theta)}} \right)^{n-1}$$

$$(5)$$

For a convex body K, let $H_K = \max_{\theta \in S^{n-1}} h_K(\theta)$.

For $1 \leq k \leq n$, let K be a k-dimensional convex body in a k-dimensional affine space of \mathbb{R}^n . Let

$$r(K) = \sup\{r > 0 : \exists x \in K \text{ such that } x + rB_2^k \subseteq K\}$$
 (6)

be the inradius of K. Let

$$r_0 = \min_{1 \le k \le n-1} \min_{F_k \in \mathcal{A}_k} r(F_k)$$

Note that $r_0 > 0$. We also put $h_0 = \max_{u \in \mathcal{B}_K} h_K(u)$.

For $\delta > 0$, we define

$$A(\delta) = \{ \theta \in S^{n-1} : \exists \ u \in \mathcal{B}_K : \|\theta - u\| < \delta \}. \tag{7}$$

and

$$s(\delta) = \sup_{\theta \in S^{n-1} \setminus A(\delta)} \frac{s_{\theta}}{h_K(\theta)}$$
 (8)

Remark. $s(\delta) < 1$ and if $\theta \to \phi$ where $\phi \in \mathcal{B}_K$, then by continuity, $\frac{s_{\theta}}{h_K(\theta)} \to 1$. Hence we may assume that for $\delta > 0$ small enough, $s(\delta)$ is attained on the "boundary" of $S^{n-1} \setminus A(\delta)$.

Lemma 3.1. Let K be a 0-symmetric polytope in \mathbb{R}^n of volume 1. Then for δ small enough,

$$s(\delta) = \sup_{\theta \in S^{n-1} \setminus A(\delta)} \frac{s_{\theta}}{h_K(\theta)} \le 1 - \frac{\delta r_0}{2h_0}$$

Proof. Let $\delta \leq \frac{h_0}{H_K}$. By the above Remark, for $\delta > 0$ small enough, there exists $\phi \in S^{n-1} \setminus A(\delta)$ such that $s(\delta) = \frac{s_{\phi}}{h_K(\phi)}$.

As $\phi \in S^{n-1} \setminus A(\delta)$, there exists $u \in \mathcal{B}_K$, such that $||u - \phi|| = \delta$. Let $v \in \partial K$ be that vertex of K such that $\langle \phi, v \rangle = \max_{x \in K} \langle \phi, x \rangle$. Let

$$x_0 = {\alpha \phi : \alpha \ge 0} \cap \partial K, \quad z_0 = {\alpha u : \alpha \ge 0} \cap \partial K,$$

and

$$d_1 = ||x_0 - z_0||, \quad d_2 = ||x_0 - v||.$$

 x_0, v and z_0 lie in the n-1-dimensional face F orthogonal to u. As $\phi \in \mathcal{G}_K$, we may also assume that δ is small enough such that $s_\phi = \|x_0\|$, and hence $s(\delta) = \frac{\|x_0\|}{h_K(\phi)}$.

Let ω be the angle between ϕ and u. Then

$$\tan \omega = \frac{d_1}{h_K(u)}$$
 and $\sin \omega = \frac{h_K(\phi) - s_\phi}{d_2}$.

Hence

$$\frac{h_K(\phi) - s_\phi}{d_2} = \frac{d_1 \cos \omega}{h_K(u)}$$

and thus

$$\frac{s_{\phi}}{h_K(\phi)} = 1 - \frac{d_1 d_2 \cos \omega}{h_K(u) h_K(\phi)}.$$

As $d_2 \geq r_0$ and as $\delta \leq \frac{d_1 \cos \omega}{h_K(u)}$, we get that

$$\frac{s_{\phi}}{h_K(\phi)} \le 1 - \frac{\delta \ r_0}{h_K(\phi)}.$$

Now observe that

$$h_k(\phi) = h_K(\phi - u) + h_K(u) < \delta H_K + h_K(u) < 2h_0.$$

Therefore,

$$\frac{s_{\phi}}{h_K(\phi)} \le 1 - \frac{\delta r_0}{2h_0}.$$

Let $f: \mathbb{R}_+ \to \mathbb{R}_+$ be a C^2 log-concave function with $\int_{\mathbb{R}_+} f(t)dt < \infty$ and let $p \geq 1$. Let $g_p(t) = t^p f(t)$ and let $t_p = t_p(f)$ the unique point such that $g'(t_p) = 0$. We make use of the following Lemma due to B. Klartag [10] (Lemma 4.3 and Lemma 4.5).

Lemma 3.2. Let f be as above. For every $\varepsilon \in (0,1)$,

$$\int_0^\infty t^p f(t)dt \le \left(1 + Ce^{-cp\varepsilon^2}\right) \int_{t_p(1-\varepsilon)}^{t_p(1+\varepsilon)} t^p f(t)dt$$

where C > 0 and c > 0 are universal constants.

We will use Lemma 3.2 for the function $f_{K,\theta}(s) = |K \cap (\theta^{\perp} + s\theta)|$ in the proof of the next lemma. First we oberve

Remark 1. Let $\theta \in \mathcal{G}_K$. As above, let $g_p(t) = t^p f_{K,\theta}(t)$ and let t_p be the unique point such that $g_p'(t_p) = 0$. Note that, since $t_p \to h_K(\theta)$, as $p \to \infty$ (see e.g. [19], Lemma 4.5), for p large enough - namely p so large that $t_p \ge s_\theta$ - we can use (5) and compute t_p .

$$t_p = \frac{p}{p+n-1}h_K(\theta) \tag{9}$$

We will also use (see e.g. [19], Lemma 4.3).

Lemma 3.3. Let p > 0. Then

$$(B(p+1,n))^{\frac{n}{p}} = 1 - \frac{n^2}{p} \log p + \frac{n}{p} \log (\Gamma(n)) + \frac{n^4}{2p^2} (\log p)^2 - \frac{n^3}{p^2} \log (\Gamma(n)) \log p \\ \pm o(p^2).$$

Lemma 3.4. Let K be a 0-symmetric polytope in \mathbb{R}^n of volume 1. For all sufficiently small δ , for all $\theta \in S^{n-1} \setminus A(\delta)$ and for all $p \geq \frac{\alpha_n(K)}{\delta}$, we have

$$\left(\frac{h_{Z_p(K)}(\theta)}{h_K(\theta)}\right)^n \le 1 - n^2 \frac{\log p}{p} + (n-1)n \frac{\log \frac{1}{\delta}}{p} + \frac{c_{K,n}}{p}.$$

 $\alpha_n(K) = \frac{4(n-1)h_0}{r_0}$ and $c_{K,n}$ are constants that depend on K and n only.

Proof. Let $0 < \delta \le \frac{h_0}{H_K}$ be as in Lemma 3.1. Let $\theta \in S^{n-1} \setminus A(\delta)$. Hence, in particular, $\theta \in \mathcal{G}_K$. By Lemma 3.2 we have for all $\varepsilon \in (0,1)$

$$h_{Z_p(K)}^p(\theta) = 2 \int_0^{h_K(\theta)} t^p f_{K,\theta}(t) dt$$

$$\leq 2 \left(1 + Ce^{-cp\varepsilon^2} \right) \int_{(1-\varepsilon)t_p}^{h_K(\theta)} t^p f_{K,\theta}(t) dt$$

Since $t_p \to h_K(\theta)$, as $p \to \infty$ (see e.g. [19], Lemma 4.5), there exists $p_{\varepsilon} > 0$ (which we will now determine), such that for all $p \ge p_{\varepsilon}$,

$$(1 - \varepsilon)t_p \ge s_\theta. \tag{10}$$

By (9), (10) holds for all $p \ge p_{\varepsilon}$ with

$$p_{\varepsilon} \ge \frac{(n-1)\frac{s_{\theta}}{h_K(\theta)}}{1 - \varepsilon - \frac{s_{\theta}}{h_K(\theta)}}$$

By Lemma 3.1, $\frac{s(\theta)}{h_K(\theta)} \le 1 - \frac{\delta r_0}{2h_0}$ and thus (10) holds for all $p \ge p_{\varepsilon}$ with

$$p_{\varepsilon} \ge \frac{n-1}{\delta} \ \frac{2h_0 - \delta r_0}{r_0 - 2h_0 \varepsilon / \delta}$$

We choose $\varepsilon = \frac{r_0 \delta}{4h_0}$. Then for

$$p_{\varepsilon} \ge \frac{n-1}{\delta} \frac{4h_0}{r_0}$$

the estimate (10) holds for all $p \ge p_{\varepsilon}$ uniformly for all $\theta \in S^{n-1} \setminus A(\delta)$. Thus, using also (5),

$$h_{Z_{p}(K)}^{p}(\theta) \leq 2\left(1 + Ce^{-cp\varepsilon^{2}}\right) \int_{(1-\varepsilon)t_{p}}^{h_{K}(\theta)} t^{p} f_{K,\theta}(t) dt$$

$$\leq 2\left(1 + Ce^{-cp\varepsilon^{2}}\right) \int_{s_{\theta}}^{h_{K}(\theta)} t^{p} f_{K,\theta}(t) dt$$

$$= 2\left(1 + Ce^{-cp\varepsilon^{2}}\right) \frac{h_{K}^{p+1}(\theta) f_{K,\theta}(s_{\theta})}{\left(1 - \frac{s_{\theta}}{h_{K}(\theta)}\right)^{n-1}} \int_{\frac{s_{\theta}}{h_{K}(\theta)}}^{1} u^{p} (1 - u)^{n-1} du$$

$$\leq 2\left(1 + Ce^{-cp\varepsilon^{2}}\right) \frac{h_{K}^{p+1}(\theta) f_{K,\theta}(0)}{\left(1 - \frac{s_{\theta}}{h_{K}(\theta)}\right)^{n-1}} \int_{\frac{s_{\theta}}{h_{K}(\theta)}}^{1} u^{p} (1 - u)^{n-1} du$$

$$\leq n \left(1 + Ce^{-cp\varepsilon^{2}}\right) B(p+1, n) h_{K}^{p}(\theta) \left(\frac{2h_{0}}{\delta r_{0}}\right)^{n-1}. \tag{11}$$

In the last inequality we have used that $1 - \frac{s_{\theta}}{h_K(\theta)} \ge \frac{\delta r_0}{2h_0}$ and that $\frac{2}{n}h_K(\theta)f_{K,\theta}(0) \le |K| = 1$. Equivalently, (11) becomes

$$\left(\frac{h_{Z_p(K)}(\theta)}{h_K(\theta)}\right)^n \le n^{\frac{n}{p}} \left(1 + Ce^{-cp\varepsilon^2}\right)^{\frac{n}{p}} \left(\frac{2h_0}{\delta r_0}\right)^{\frac{(n-1)n}{p}} B(p+1,n)^{\frac{n}{p}}.$$

With Lemma 3.3, we then get

$$\left(\frac{h_{Z_p(K)}(\theta)}{h_K(\theta)}\right)^n \le 1 - n^2 \frac{\log p}{p} + (n-1)n \frac{\log \frac{1}{\delta}}{p} + \frac{c_{K,n}}{p}.$$

Let $\delta \in [0,1)$ and $\theta \in S^{n-1}$. We define the cap $C(\theta,\delta)$ of the sphere S^{n-1} around θ by

$$C(\theta, \delta) := \{ \phi \in S^{n-1} : \|\phi - \theta\|_2 \leqslant \delta \}.$$

We will estimate the surface area of a cap, and to do so we will make use of the following fact which follows immediately from e.g. Lemma 1.3 in [23].

Lemma 3.5. Let $\theta \in S^{n-1}$ and $\delta < 1$. Then

$$vol_{n-1}(B_2^{n-1})\left(1 - \frac{\delta^2}{4}\right)^{\frac{n-1}{2}} \delta^{n-1} \leqslant \sigma(C(\theta, \delta)) \leq$$

$$vol_{n-1}(B_2^{n-1})\left(1 - \frac{\delta^2}{4}\right)^{\frac{n-1}{2}} \frac{\left(1 + \frac{\delta^4}{4}\right)^{\frac{1}{2}}}{\left(1 - \frac{\delta^2}{2}\right)} \delta^{n-1}.$$

Proof of Theorem 1.1.

For p given, let $\delta = \frac{1}{\log p}$. Let $A(\delta)$ as defined in (2.10). Let p_0 be such that p_0 and $\delta = \frac{1}{\log p}$ satisfy the assumptions of Lemma 3.4, i.e. $\frac{p_0}{\log p_0} \geq \frac{4(n-1)h_0}{r_0}$. By Lemma 3.4, we have for all $p \geq p_0$,

$$\begin{split} &|Z_p^{\circ}(K)| - |K^{\circ}| \geq \frac{1}{n} \int_{S^{n-1} \backslash A(\delta)} \frac{1}{h_{Z_p(K)}^n(\theta)} \left(1 - \frac{h_{Z_p(K)}^n(\theta)}{h_K^n(\theta)} \right) d\sigma(\theta) \\ &\geq \frac{1}{n} \int_{S^{n-1} \backslash A(\delta)} \frac{1}{h_{Z_p(K)}^n(\theta)} \left(\frac{n^2 \log p}{p} - (n-1)n \frac{\log \log p}{p} + \frac{c_{K,n}}{p} \right) d\sigma(\theta) \\ &= \frac{1}{n} \int_{S^{n-1}} \frac{1}{h_{Z_p(K)}^n(\theta)} \left(\frac{n^2 \log p}{p} - (n-1)n \frac{\log \log p}{p} + \frac{c_{K,n}}{p} \right) d\sigma(\theta) \\ &- \frac{1}{n} \int_{A(\delta)} \frac{1}{h_{Z_n(K)}^n(\theta)} \left(\frac{n^2 \log p}{p} - (n-1)n \frac{\log \log p}{p} + \frac{c_{K,n}}{p} \right) d\sigma(\theta). \end{split}$$

Hence,

$$\begin{split} &\frac{p}{\log p} \left(|Z_p^{\circ}(K)| - |K^{\circ}| \right) \geq \\ &\frac{1}{n} \int_{S^{n-1}} \frac{1}{h_{Z_p(K)}^n(\theta)} \left(n^2 - \frac{(n-1)n \log \log p}{\log p} + \frac{c_{K,n}}{\log p} \right) d\sigma(\theta) \\ &- \frac{1}{n} \int_{A(\delta)} \frac{1}{h_{Z_p(K)}^n(\theta)} \left(n^2 - \frac{(n-1)n \log \log p}{\log p} + \frac{c_{K,n}}{\log p} \right) d\sigma(\theta). \end{split}$$

Note that, since K is centrally symmetric, $r(K) = \inf_{\theta \in S^{n-1}} h_K(\theta)$. Also, since $Z_p(K)$ converges to K, for p sufficiently large, $h^n_{Z_p(K)}(\theta) \geq \left(\frac{r(K)}{2}\right)^n$ for every

 $\theta \in S^{n-1}$. Together with Lemma 3.5 we thus get

$$\frac{1}{n} \int_{A(\delta)} \frac{1}{h_{Z_{p}(K)}^{n}(\theta)} d\sigma(\theta) \leq \frac{2^{n+1}}{n \ r(K)^{n}} \operatorname{card}(\mathcal{B}_{K}) \operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right) \delta^{n-1} \left(1 - \frac{\delta^{2}}{4}\right)^{\frac{n-1}{2}} \frac{\left(1 + \frac{\delta^{4}}{4}\right)^{\frac{1}{2}}}{\left(1 - \frac{\delta^{2}}{2}\right)} \leq \frac{2^{n+1} \operatorname{card}(\mathcal{B}_{K})}{n \ r(K)^{n}} \frac{\operatorname{vol}_{n-1}\left(B_{2}^{n-1}\right)}{(\log p)^{n-1}}.$$

By Proposition 2.2 and Lebesgue's convergence theorem we can interchange integration and limit and get

$$\begin{split} &\lim_{p\to\infty}\frac{p}{\log p}\left(|Z_p^\circ(K)|-|K^\circ|\right)\geq\\ &\frac{1}{n}\int_{S^{n-1}}\lim_{p\to\infty}\frac{1}{h_{Z_p(K)}^n(\theta)}\bigg(n^2-\frac{(n-1)n\log\log p}{\log p}+\frac{c_{K,n}}{\log p}\bigg)d\sigma(\theta)\\ &-\frac{2^{n+1}\mathrm{card}\left(\mathcal{B}_K\right)\mathrm{vol}_{n-1}\left(B_2^{n-1}\right)}{n\ r(K)^n}\lim_{p\to\infty}\left(\frac{n^2}{(\log p)^{n-1}}-\frac{(n-1)n\log\log p}{(\log p)^n}+\frac{c_{K,n}}{(\log p)^n}\right)\\ &=n^2|K^\circ|. \end{split}$$

Here, we have also used that $\lim_{p\to\infty} h_{Z_p(K)}(\theta) = h_K(\theta)$.

The inequality from above follows by Proposition 2.2.

4 Approximation with uniformly convex bodies

Let K be a symmetric convex body in \mathbb{R}^n and $2 \leq p < \infty$. We say that K is p-uniformly convex (with constant C_p) (see e.g. [3, 11]), if for every $x, y \in \partial K$,

$$\|\frac{x+y}{2}\|_{K} \le 1 - C_{p}\|x-y\|_{K}^{p}.$$

We will need the following Proposition. The proof is based on Clarkson inequalities and can be found in e.g. ([3], pp. 148).

Proposition 4.1. Let K be a compact set in \mathbb{R}^n of volume 1. Then for $p \geq 2$, $Z_p^{\circ}(K)$ is p-uniformly convex with constant $C_p = \frac{1}{p2^p}$.

The symmetric difference metric between two convex bodies K and C is

$$d_s(C, K) = |(C \setminus K) \cup (K \setminus C)|.$$

Proof of Theorem 1.2.

Let $P_1 = \frac{P^{\circ}}{|P^{\circ}|^{\frac{1}{n}}}$. Then $P_1^{\circ} = |P^{\circ}|^{\frac{1}{n}}P$ and $|P_1^{\circ}| = |P||P^{\circ}|$. Let $K_p = |P^{\circ}|^{-\frac{1}{n}}Z_p^{\circ}(P_1)$. Then by Proposition 4.1 we have that K_p is uniformly convex. Note that $P \subseteq K_p$. By Theorem 1.1 we have that

$$\lim_{p \to \infty} \frac{p}{\log p} \left(|Z_p^{\circ}(P_1)| - |P_1^{\circ}| \right) = n^2 |P_1^{\circ}|.$$

So, for every $\varepsilon > 0$, there exists $p_0(\varepsilon, P)$ such that

$$d_s(P,K_p) = |K_p| - |P| = \frac{1}{|P^{\circ}|} \left(|Z_p^{\circ}(P_1)| - |P_1^{\circ}| \right) \leqslant$$

$$(1+\varepsilon)n^2\frac{|P_1^\circ|}{|P^\circ|}\frac{\log p}{p} = (1+\varepsilon)n^2|P|\frac{\log p}{p}.$$

We choose $\varepsilon = 1$ and the proof is complete.

References

- [1] R.J. Gardner, *Geometric tomography*, Encyclopedia of Mathematics and its Applications, **58**. Cambridge University Press, Cambridge, 1995.
- [2] R. J. Gardner and G. Zhang, Affine inequalities and radial mean bodies. Amer. J. Math. 120 no.3 (1998), 505-528.
- [3] D. J. H. Garling, *Inequalities*, A journey into Linear Analysis, Cambridge University Press (2007).
- [4] E. Grinberg and G. Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc. 78 no.3 (1999), 77-115.
- [5] C. Haberl, Blaschke valuations, Amer. J. of Math., in press
- [6] C. Haberl and F. Schuster, General Lp affine isoperimetric inequalities. J. Differential Geometry 83 (2009), 1-26.
- [7] C. Haberl, E. Lutwak, D. Yang and G. Zhang, *The even Orlicz Minkowski problem*, Adv. Math. **224** (2010), 2485-2510
- [8] D. Klain, Star valuations and dual mixed volumes, Adv. Math. 121 (1996), 80-101.
- [9] D. Klain, Invariant valuations on star-shaped sets, Adv. Math. 125 (1997), 95-113.
- [10] B. Klartag, A central limit theorem for convex sets, Invent. Math. 168 (2007) 91-131.
- [11] J. LINDENSTRAUSS AND L. TZAFRIRI, Classical Banach spaces I, II, reprint, Springer, 1996.

- [12] M. Ludwig, $Minkowski\ valuations$, Trans. Amer. Math. Soc. **357** (2005), 4191-4213.
- [13] M. Ludwig, *Minkowski areas and valuations*, J. Differential Geometry, **86** (2010), 133-162.
- [14] M. LUDWIG AND M. REITZNER, A Characterization of Affine Surface Area, Adv. Math. 147 (1999), 138-172.
- [15] M. LUDWIG AND M. REITZNER, A classification of SL(n) invariant valuations. Ann. of Math. 172 (2010), 1223-1271.
- [16] E. LUTWAK, The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas, Adv. Math. 118 (1996), 244-294.
- [17] E. Lutwak and G. Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), 1–16.
- [18] M. Meyer and E. Werner, The Santalo-regions of a convex body, Transactions of the AMS 350 (1998), 4569–4591.
- [19] G. Paouris and E. Werner, Relative entropy of cone measures and L_p -centroid bodies, Proc. London Math. Soc., in press (available at arXiv:0909.436).
- [20] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, Cambridge (1993).
- [21] M. Schmuckenschläger, The distribution function of the convolution square of a convex symmetric body in \mathbb{R}^n , Israel Journal of Math. 78 (1992), 309–334.
- [22] C. Schütt and E. Werner, The convex floating body, Math. Scand. 66, (1990), 275–290.
- [23] C. Schütt and E. Werner, *Polytopes with Vertices Chosen Randomly from the Boundary of a Convex Body*, Geom. Aspects of Funct. Analysis, Lecture Notes in Math. **1807** (2003), 241–422.
- [24] C. Schütt and E. Werner, Surface bodies and p-affine surface area. Adv. Math. 187 (2004), 98-145.
- [25] A. Stancu, The Discrete Planar L_0 -Minkowski Problem. Adv. Math. 167 (2002), 160-174.
- [26] A. Stancu, On the number of solutions to the discrete two-dimensional L₀-Minkowski problem. Adv. Math. 180 (2003), 290-323.
- [27] E. Werner, Illumination bodies and affine surface area, Studia Math. 110 (1994), 257–269.
- [28] E. WERNER AND D. YE, New L_p affine isoperimetric inequalities, Adv. Math. **218** no.3 (2008), 762-780.

- [29] E. Werner and D. Ye, Inequalities for mixed p-affine surface area, Math. Ann. 347 (2010), 703-737
- [30] G. Zhang, New Affine Isoperimetric Inequalities, ICCM 2007, Vol. II, 239-267.

Grigoris Paouris Department of Mathematics Texas A & M University College Station, TX, , U. S. A.

Elisabeth Werner Department of Mathematics Case Western Reserve University Cleveland, Ohio 44106, U. S. A. elisabeth.werner@case.edu

Université de Lille 1 UFR de Mathématique 59655 Villeneuve d'Ascq, France