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Abstract

We introduce a new class of (not necessarily convex) bodies and
show, among other things, that these bodies provide yet another link
between convex geometric analysis and information theory. Namely,
they give geometric interpretations of the relative entropy of the cone
measures of a convex body and its polar and related quantities.

Such interpretations were first given by Paouris and Werner for
symmetric convex bodies in the context of the Lp-centroid bodies.
There, the relative entropies appear after performing second order ex-
pansions of certain expressions. Now, no symmetry assumptions are
needed. Moreover, using the new bodies, already first order expansions
make the relative entropies appear. Thus, these bodies detect “faster”
details of the boundary of a convex body than the Lp-centroid bodies.

1 Introduction.

It has been observed in recent years that there is a close connection be-
tween convex geometric analysis and information theory. An example is the
parallel between geometric inequalities for convex bodies and inequalities for
probability densities. For instance, the Brunn-Minkowski inequality and the
entropy power inequality follow both in a very similar way from the sharp
Young inequality (see. e.g., [3]).

Further connections between convexity and information theory were es-
tablished by Lutwak, Yang, and Zhang ([21, 24, 26]). They showed in [24]
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that the Cramer-Rao inequality corresponds to an inclusion of the Legen-
dre ellipsoid and the polar L2-projection body. The latter is a basic notion
from the Lp-Brunn-Minkowski theory. This theory evolved rapidly over the
last years and due to a number of highly influential works (see, e.g., [5],
[7], [8], [10] - [29], [31], [33] - [42], [45]), it is now a central part of modern
convex geometry. In fact, this affine geometry of bodies pertains to some
questions that had been considered Euclidean in nature. For example, the
famous Busemann-Petty Problem (finally laid to rest in [4, 6, 31, 43, 44]),
was shown to be an affine problem with the introduction of intersection
bodies by Lutwak in [19].

Two fundamental notions within the Lp-Brunn-Minkowski theory are
Lp-affine surface areas, introduced by Lutwak in [20], and Lp-centroid bod-
ies introduced by Lutwak and Zhang in [22]. See Section 3 for the definition
of those quantities. Based on these quantities, Paouris and Werner [30]
established yet another relation between affine convex geometry and infor-
mation theory. They proved that the exponential of the relative entropy of
the cone measures of a symmetric convex body and its polar equals a limit
of normalized Lp-affine surface areas. Moreover, they introduce a new affine
invariant quantity ΩK (see also Section 3 for the definition).

Here we introduce a new class of (not necessarily convex) bodies which
we call mean width bodies. We describe some of their properties. For in-
stance, we show that they are always star shaped and that they provide
geometric interpretations of Lp-affine surface areas. Many such geometric
interpretations have been given (see e.g. [28, 35, 36, 40, 41, 42]). The twist
here is that these new geometric interpretations of affine invariants for con-
vex bodies are expressed in terms of not necessarily convex bodies (see also
[42]).

More importantly, these bodies provide yet another link between convex
geometric analysis and information theory: The main result of the paper
shows that these new bodies give geometric interpretations of both, the
relative entropy of the cone measures of a not necessarily symmetric convex
body and its polar and the quantity ΩK . Such interpretations were first
given by Paouris and Werner [30] only for symmetric convex bodies in the
context of the Lp-centroid bodies. There the relative entropies appear after
performing a second order expansion of certain expressions. The remarkable
fact now is that, using the mean width bodies, already a first order expansion
makes them appear. Thus, these new bodies detect “faster” details of the
boundary of a convex body than the Lp-centroid bodies.
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1.1 Notation

We work in Rn, which is equipped with a Euclidean structure 〈·, ·〉. We
denote by ‖·‖2 the corresponding Euclidean norm. Bn

2 (x, r) is the Euclidean
ball centered at x with radius r. We write Bn

2 = Bn
2 (0, 1) for the Euclidean

unit ball centered at 0 and Sn−1 for the unit sphere. Volume is denoted by
| · |. Some of our definitions, the below Lp-affine surface area among them,
require a fixed reference point. Thus, throughout the paper, we will assume
without loss of generality that the centroid of a convex body K in Rn is at
the origin. K∗ = {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ K} is the polar body of
K. The normalized cone measure VK on ∂K, the boundary of K, is defined
as follows: For every measurable set A ⊆ ∂K

VK(A) =
1
|K|
|{ta : a ∈ A, t ∈ [0, 1]}|.

Let L be a subset of Rn that contains 0. Then L is called star shaped, if the
line segment [0, x] ⊂ L for all x ∈ L.

We write K ∈ C2
+, if K has C2 boundary ∂K with everywhere strictly

positive Gaussian curvature κK . For a point x ∈ ∂K, NK(x) is the outer
unit normal at x to K. SK is the usual surface area measure on ∂K. The
usual surface area measure on Sn−1 is denoted by ω. σ is its normalization:
σ(A) = ω(A)

ω(Sn−1)
for all Borel measurable sets A ⊂ Sn−1.

For u and x in Rn, H = H(x, ξ) is the hyperplane through x orthogonal
to ξ. H+ = H+(x, ξ) = {y ∈ Rn : 〈y, ξ〉 ≥ 〈x, ξ〉} and H− = H−(x, ξ) =
{y ∈ Rn : 〈y, ξ〉 ≤ 〈x, ξ〉} are the two closed half spaces generated by H.

Let K be a convex body in Rn and let u ∈ Sn−1. Then hK(u) is the
support function of direction u ∈ Sn−1, and fK(u) is the curvature function,
i.e. the reciprocal of the Gaussian curvature κK(x) at this point x ∈ ∂K
that has u as outer normal. The mean width W (K) of a convex body K in
Rn is defined as

W (K) = 2
∫
Sn−1

hK(u)dσ(u).

For a convex body K in Rn of volume 1 and 1 ≤ p ≤ ∞, the Lp-centroid
body Zp(K), introduced in [22], is this convex body that has support func-
tion

hZp(K)(θ) =
(∫

K
|〈x, θ〉|pdx

)1/p

.

Lp-affine surface area Ωp(K) of K was introduced by Lutwak in the
ground breaking paper [20] for p > 1 and for general p by Schütt and
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Werner [36]. For real p 6= −n, we define Ωp(K) as in [20] (p > 1) and [36]
(p < 1, p 6= −n) by

Ωp(K) =
∫
∂K

κK(x)
p

n+p

〈x,NK(x)〉
n(p−1)
n+p

dSK(x) (1)

and
Ω±∞(K) =

∫
∂K

κK(x)
〈x,NK(x)〉n

dSK(x), (2)

provided the above integrals exist. In particular, for p = 0

Ω0(K) =
∫
∂K
〈x,NK(x)〉 dSK(x) = n|K|.

The case p = 1 is the classical affine surface area which is independent of
the position of K in space and which goes back to Blaschke.

Ω1(K) =
∫
∂K

κK(x)
1

n+1 dSK(x).

Originally a basic affine invariant from the field of affine differential geome-
try, it has recently attracted increased attention too (e.g. [17, 20, 27, 34, 39]).

Let (X,µ) be a measure space and let dP = pdµ and dQ = qdµ be
probability measures on X that are absolutely continuous with respect to
the measure µ. The Kullback-Leibler divergence or relative entropy from P
to Q is defined as (see [2])

DKL(P‖Q) =
∫
X
p log

p

q
dµ. (3)

2 Mean width bodies.

Let K be a convex body in Rn. It is easy to see ([9]) that the mean width
of W (K) can be written as

W (K) =
2

ω(Sn−1)

∫
Rn\K∗

‖ξ‖−(n+1)dξ (4)

and therefore, for convex bodies M and K with K ⊂M ,

W (M)−W (K) =
2

ω(Sn−1)

∫
K∗\M∗

‖ξ‖−(n+1)dξ. (5)
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Let f : K∗ → R be a positive, integrable function. We generalize (4) to

Wf (K) =
2

ω(Sn−1)

∫
Rn\K∗

f(ξ)dξ. (6)

Therefore, for convex bodies M and K with K ⊂M , (5) generalizes to

Wf (M)−Wf (K) =
2

ω(Sn−1)

∫
K∗\M∗

f(ξ)dξ. (7)

In the following easy lemma we will need another notation.
Let α ∈ R, α 6= 0. Let f : Rn → R be a positive function. Recall that f is
said to be homogeneous of degree α, if for all r ≥ 0,

f(ru) = rαf(u).

Lemma 2.1. Let K and M be convex bodies in Rn such that K ⊂ M . Let
f : Rn → R be a positive, integrable function that is homogeneous of degree
α.

(i) Let α 6= −n. Then

Wf (M)−Wf (K) =
2

(α+ n)

∫
Sn−1

f(u)
[

1
hα+n
K (u)

− 1
hα+n
M (u)

]
dσ(u).

(ii) Let α = −n. Then

Wf (M)−Wf (K) = 2
∫
Sn−1

f(u) log
[
hM (u)
hK(u)

]
dσ(u).

Proof. We use α-homogeneity and get

Wf (M)−Wf (K) =
2

ω(Sn−1)

∫
K∗\M∗

f(ξ)dξ

=
2

ω(Sn−1)

∫
Sn−1

∫ 1
hK (u)

1
hM (u)

f(ru)rn−1drdω(u)

=
2

ω(Sn−1)

∫
Sn−1

∫ 1
hK (u)

1
hM (u)

f(u)rn+α−1drdω(u).

Integration then yields (i) and (ii).
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If we let f(u) = 1
hnK(u) (or f(u) = 1

hnM (u)) in Lemma 2.1 (ii), then f(ru) =
r−n

hnK(u) = r−nf(u). Thus this f is homogeneous of degree −n.

Consider now the measure space (X,µ) = (Sn−1, ω) and for convex bod-
ies K and M in Rn put

pK =
1

n|K∗|hnK
, pM =

1
n|M∗|hnM

. (8)

Then dPK = pKdω and dPM = pMdω are probability measures on Sn−1 and
Lemma 2.1 (ii) becomes

W 1
hn
K

(M)−W 1
hn
K

(K) =
2
n
|K∗|

∫
Sn−1

1
|K∗|hnK

log
(
hnM
hnK

)
dσ

=
2|K∗|
ω(Sn−1)

∫
Sn−1

pK

(
log

pK
pM

+ log
(
|K∗|
|M∗|

))
dω

=
2|K∗|
ω(Sn−1)

(
DKL(PK‖PM ) + log

(
|K∗|
|M∗|

))
.

Hence we get

Corollary 2.2. Let K and M be convex bodies in Rn such that K ⊂M and
let pK and pM be the probability densities given in (8). Then∫

K∗\M∗

1
hnK(ξ)

dξ

|K∗|
= DKL(PK‖PM ) + log

(
|K∗|
|M∗|

)
.

We now want to apply the above considerations for a specific M . Namely,
for x ∈ Rn, let Kx = [x,K] be the convex hull of x and K. For x ∈ K,
Kx = K. Therefore, we will consider only x /∈ K. Let t ≥ 0 and let

K[t] = {x ∈ Rn : w(x) ≤ t} (9)

where

w(x) = W (Kx)−W (K) =
2

ω(Sn−1)

∫
K∗\K∗x

‖ξ‖−(n+1)dξ. (10)

The bodies K[t] have been used by several authors (e.g. by Böröczky and
Schneider [1] and Glasauer and Gruber [9]) in connection with approxima-
tion of convex bodies by polytopes. We generalize them to the mean width
bodies as follows.
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Definition 2.3. Let f : K∗ → R be a positive, integrable function. Let

wf (x) = Wf (Kx)−Wf (K) =
2

ω(Sn−1)

∫
K∗\K∗x

f(ξ)dξ (11)

Then we call
Kf [t] = {x ∈ Rn : wf (x) ≤ t}. (12)

the mean width bodies of K with respect to f .

Thus, for instance, for β ∈ R and fβ(ξ) = ‖ξ‖−β we get

Kfβ [t] =

{
x ∈ Rn :

2
ω(Sn−1)

∫
K∗\K∗x

‖ξ‖−βdx ≤ t

}
, (13)

which, in the particular case β = n+ 1, gives the bodies (9) above.

As Kx = [x,K], K∗x = K∗ ∩ {y ∈ Rn : 〈y, x〉 ≤ 1}. Thus, putting
H+

(
x
‖x‖2 , x

)
= {y ∈ Rn : 〈y, x〉 ≤ 1}, K∗x is obtained from K∗ by cutting

off a cap K∗ ∩H−
(

x
‖x‖2 , x

)
of K∗:

K∗x = K∗ ∩H+

(
x

‖x‖2
,
x

‖x‖

)
.

and

K∗ \K∗x = K∗ ∩H−
(

x

‖x‖2
,
x

‖x‖

)
.

Therefore

Kf [t] =

x ∈ Rn :
2

ω(Sn−1)

∫
K∗∩H−

“
x
‖x‖2

, x‖x‖

” f(ξ)dξ ≤ t

 . (14)

Remarks 1: Properties of Kf [t]

(i) It is clear that for all f and for all t ≥ 0, K ⊂ Kf [t] and that Kfβ [0] = K
for all β. However, it can happen that K is a proper subset of Kf [0].

To see that, let K = Bn
∞ = {(x1, . . . , xn) ∈ Rn : max1≤i≤n|xi| ≤ 1}.

Then K∗ = Bn
1 = {(x1, . . . , xn) ∈ Rn :

∑n
i=1 |xi| ≤ 1}.

Define f : Bn
1 → R, (x1, . . . , xn)→ f((x1, . . . , xn)) by

f(x) =
{

0, xn ≥ 0
1, otherwise.
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Then (0, . . . , 0, 3
2) ∈ Kf [0] but (0, . . . , 0, 3

2) /∈ K.

(ii) Kf [t] need neither be bounded nor convex. Indeed, let K = B2
∞. Define

f : B2
1 → R, (x1, x2)→ f((x1, x2)) by

f(x) =
{

1
2 , x2 ≥ 0
1, otherwise.

If t ≥ 1
π , Kf [t] = R2. If 3

4π ≤ t < 1
π , {(x1, x2) ∈ R2 : x2 ≥ 0} ⊂ Kf [t]. If

1
2π ≤ t < 3

4π , {(0, x2) ∈ R2 : x2 ≥ 0} ⊂ Kf [t]. Thus Kf [t] is unbounded in
those cases. If t < 1

2π , then Kf [t] is bounded.
Moreover, with the same K and f : {(x1, x2) ∈ R2 : x2 ≥ 0} ⊂ Kf [ 3

4π ]

and
(

0,− 1
1−
√

3/2

)
∈ Kf [ 3

4π ]. Let x0 =
(

1
1−
√

3/2
, −1

1−
√

3/2

)
. Then wf (x0) =

√
3
(
1−
√

3/16
)
> 3

4π . Therefore, Kf [ 3
4π ] is not convex.

(iii) Formulas (11) and (14) show that to define Kf [t], we cut off a set of
“weighted volume” t of K∗. Thus Kf [t] resembles the convex floating body
of K∗.

Recall that for 0 ≤ δ ≤ |K|
2 , the convex floating body Kδ of K is the

intersection of all halfspaces H+ whose defining hyperplanes H cut off a set
of volume at most δ from K [34]:

Kδ =
⋂

|H−∩K|≤δ

H+.

For β = 0, we get in formula (14),

Kf0 [t] = {x ∈ Rn :
2

ω(Sn−1)

∫
K∗∩H−

“
x
‖x‖2

, x‖x‖

” dξ ≤ t}
=

{
x ∈ Rn :

∣∣∣∣K∗ ∩H−( x

‖x‖2
,
x

‖x‖

)∣∣∣∣ ≤ tω(Sn−1)
2

}
However, Kf0 [t] is not a convex floating body of K∗.

Indeed, it is easy to see that for the Euclidean ball B = rBn
2 in Rn with

radius r, Bf0 [t], for small t, is a Euclidean ball with radius of order

r
(

1 + knr
2n
n+1 t

2
n+1

)
,

where kn = 1
2

(
n(n+1)|Bn2 |

2|Bn−1
2 |

) 2
n+1 . (B∗)δ, for small δ, is a ball with radius of

order
1
r

(
1− cnr

2n
n+1 δ

2
n+1

)
,

8



where cn = 1
2

(
n+1
|Bn−1

2 |

) 2
n+1 (see e.g. [34]) and Bδ, for small δ, is a ball with

radius of order

r

(
1− cn

r
2n
n+1

δ
2

n+1

)
,

(see also e.g. [34]).

Also, Kf0 [t] is different from the illumination body Kδ which, for δ ≥ 0,
is defined as follows [39]:

Kδ = {x ∈ Rn : |co[x,K]\K| ≤ δ}.

Again, this can be seen by considering the Euclidean ball rBn
2 . (rBn

2 )δ, for
small δ, is a Euclidean ball with radius of order

r

(
1 +

dn

r
2n
n+1

δ
2

n+1

)
,

where dn = 1
2

(
n(n+1)

|Bn−1
2 |

) 2
n+1 [39].

We have seen that Kf [t] need not be convex. But it is always star shaped.

Lemma 2.4. Let K be a convex body in Rn and let f : K∗ → R be a positive,
integrable function.

(i) Kf [t] is star shaped.

(ii) Kf [t] =
⋂
s>0Kf [t+ s].

Proof. (i) Let x ∈ Kf [t] and let y ∈ [0, x]. Then Ky = [y,K] ⊂ [x,K] = Kx

and consequently K∗ \K∗y ⊂ K∗ \K∗x. As f ≥ 0 on K∗, we therefore get

2
ω(Sn−1)

∫
K∗\K∗y

f(ξ)dξ ≤ 2
ω(Sn−1)

∫
K∗\K∗x

f(ξ)dξ ≤ t

and thus y ∈ Kf [t].

(ii) For all s > 0, Kf [t] ⊂ Kf [t + s]. Therefore, we only need to show that⋂
s>0Kf [t + s] ⊂ Kf [t]. Let thus x ∈

⋂
s>0Kf [t + s]. Then for all s > 0,

wf (x) ≤ t+ s. Letting s→ 0, we get wf (x) ≤ t.

Additional conditions on f ensure convexity of Kf [t]. This is shown in
the next lemma whose proof is the same as the corresponding one in [1].
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Lemma 2.5. Let K be a convex body in Rn and let f : Sn−1 → R be a
positive, integrable function that is homogeneous of degree α. Then Kf [t] is
convex for all α ≤ −(n+ 1).

Proof. Let x and y be in Kf [t] and let 0 < λ < 1. For t ∈ R, t ≥ 0,
the function g(t) = tγ is convex if γ ≥ 1. Therefore, and as K(1−λ)x+λy ⊆
(1− λ)Kx + λKy, we get for α ≤ −(n+ 1)

h
−(α+n)
K(1−λ)x+λy

−(α+ n)
≤
(
(1− λ) hKx + λ hKy

)−(α+n)

−(α+ n)
≤

(1− λ) h−(α+n)
Kx

+ λ h
−(α+n)
Ky

−(α+ n)
.

Hence for α ≤ −(n+ 1),

2
−(α+ n)

∫
Sn−1

f(u)h−(α+n)
K(1−λ)x+λy

(u)dσ(u)

≤ 2
−(α+ n)

[
(1− λ)

∫
Sn−1

f(u)h−(α+n)
Kx

(u)dσ(u)

+λ
∫
Sn−1

f(u)h−(α+n)
Ky

(u)dσ(u)
]

≤ (1− λ)
[

2
−(α+ n)

∫
Sn−1

f(u)h−(α+n)
K (u)dσ(u) + t

]
+λ
[

2
−(α+ n)

∫
Sn−1

f(u)h−(α+n)
K (u)dσ(u) + t

]
=

2
−(α+ n)

∫
Sn−1

f(u)h−(α+n)
K (u)dσ + t.

Remark. If α > −(n + 1), then Kf [t] need not be convex. An example is
the cube in R2 and the f given in Remark 1 (ii).

Now we give conditions that guarantee that Kf [t] is bounded.

Lemma 2.6. Let K be a convex body in Rn and let f : K∗ → R be a strictly
positive, integrable function. Then

(i) Kf [0] = K.

(ii) There exists t0 such that for all t ≤ t0, Kf [t] is bounded.

(iii) Let t ≤ t0, where t0 is as in (ii). Then we have for all x ∈ ∂Kf [t] that
wf (x) = t.
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Proof.
(i) We only have to show that Kf [0] ⊂ K. Let x ∈ Kf [0]. Then wf (x) =

2
ω(Sn−1)

∫
K∗\K∗x

f(ξ)dξ = 0. As f > 0 on K∗, this can only happen if m(K∗ \
K∗x) = 0. As K∗x ⊂ K∗ is closed and convex, this can only happen if
K∗x = K∗, or, equivalently, Kx = K, or x ∈ K.

(ii) This follows immediately from (i), Lemma 2.4 (ii) and the fact that, as
K is a convex body, there exists α > 0 such that

Bn
2 (0, α) ⊂ K ⊂ Bn

2

(
0,

1
α

)
. (15)

As K = Kf [0] =
⋂
t>0Kf [t], there exists t0 such that for all t ≤ t0, Kf [t] ⊂

2K ⊂ Bn
2

(
0, 2

α

)
.

(iii) Let t ≤ t0 and let x ∈ ∂Kf [t]. Suppose wf (x) < t. Let y ∈ {ax :
a ≥ 1}. Then Kx = [x,K] ⊂ Ky = [y,K], hence K∗y ⊂ K∗x and therefore∫
K∗\K∗y

f(ξ)dξ ≥
∫
K∗\K∗x

f(ξ)dξ. As f > 0 on K∗, we can choose y = ax with

a > 1 such that 2
ω(Sn−1)

∫
K∗\K∗y

f(ξ)dξ = t. This implies that x /∈ ∂Kf [t], a
contradiction.

3 Relative entropies of cone measures and affine
surface areas

In this section we present new geometric interpretations of important affine
invariants, namely the Lp-affine surface areas. Many such geometric inter-
pretations have been given (see e.g. [28, 35, 36, 40, 41, 42]). The remark-
able fact here is that these geometric interpretations of affine invariants for
convex bodies are expressed in terms of not necessarily convex bodies, a
phenomenon which already occurred in [42].

We also give new geometric interpretations for the relative entropies
of cone measures of convex bodies. Geometric interpretations for those
quantities were given first in [30] in terms of Lp-centroid bodies. However,
in the context of the Lp-centroid bodies, the relative entropies appeared
only after performing a second order expansion of certain expressions. Now,
using the mean width bodies, already a first order expansion makes them
appear. Thus, these bodies detect “faster” more detail of the boundary of
a convex body than the Lp-centroid bodies.
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Theorem 3.1. Let K be a convex body in Rn that is in C2
+. Let f : K∗ → R

be a continuous function such that f(y) ≥ c for all y ∈ K∗ and some constant
c > 0. Then

lim
t→0

|Kf [t]| − |K|
kn t

2
n+1

=
∫
∂K

〈x,NK(x)〉2dSK(x)

f(y(x))κK(x)
1

n+1

.

kn = 1
2

(
n(n+1)|Bn2 |

2|Bn−1
2 |

) 2
n+1 and y(x) ∈ ∂K∗ is such that 〈y(x), x〉 = 1.

Remark.
We put NK(x) = u. Then 〈x,NK(x)〉 = hK(u) and y(x) = u

hK(u) . As
dSK = fKdω, we therefore also have

lim
t→0

|Kf [t]| − |K|
kn t

2
n+1

=
∫
Sn−1

hK(u)2dω(u)

fK(u)
n+2
n+1 f

(
u

hK(u)

) . (16)

Theorem 3.1 leads to the announced new geometric interpretations of
the above mentioned quantities. For that, we need the following functions.
For p ∈ R, p 6= −n, let gΩp : ∂K∗ → R be defined by

gΩp(y) =

(
〈x,NK(x)〉
κK(x)

1
n+1

)n+p(n+2)
n+p

, (17)

where, for y ∈ ∂K∗, x = x(y) ∈ ∂K is such that 〈x, y〉 = 1.
For β ∈ R, let fβ : K∗ → R be defined by

fβ(y) =
1
‖y‖β

= 〈x,NK(x)〉β, (18)

where, again, for y ∈ ∂K∗, x = x(y) ∈ ∂K is such that 〈x, y〉 = 1.
Then we have

Corollary 3.2. Let K be a convex body in Rn that is in C2
+.

(i) For p ∈ R, p 6= −n, let gΩp as in (17). Then

lim
t→0

|KgΩp
[t]| − |K|

kn t
2

n+1

=
∫
∂K

κK(x)
p

n+pdSK(x)

〈x,NK(x)〉
n(p−1)
n+p

= Ωp(K).

12



(ii) For β ∈ R, let fβ be as in (18). Then

lim
t→0

|Kfβ [t]| − |K|

kn t
2

n+1

=
∫
∂K

dSK(x)

κK(x)
1

n+1 〈x,NK(x)〉β−2

Proof. As ∂K is in C2
+, the functions gΩp and fβ satisfy the conditions

of Theorem 3.1. The proof of the corollary then follows immediately from
Theorem 3.1.

Remarks

(i) For β = 0, we get in Corollary 3.2 (ii) the Ω− n
n+2

-affine surface area of
K.

(ii) As κK(rx) = r−(n−1)κK(x), it makes most sense to put fK(ru) =
frK(u) = rn−1fK(u) and define n − 1 to be the degree of homogeneity
of the function fK . Then gΩp is homogeneous of degree 2n(n+p(n+2))

(n+1)(n+p) and
fβ is homogeneous of degree β. Thus, by Lemma 2.5, KgΩp

[t] is convex if

−n < p ≤ −n (n+1)2+1
(n+1)2+n+2

and Kfβ [t] is convex if β ≤ −(n+ 1).

Let K a convex body in Rn that is C2
+. Let

pK(x) =
κK(x)

〈x,NK(x)〉n n|K∗|
, qK(x) =

〈x,NK(x)〉
n |K|

. (19)

Then
PK = pK SK and QK = qK SK (20)

are probability measures on ∂K that are absolutely continuous with respect
to SK .

The next proposition is well known. See e.g. [30] for a proof. There,
NK : ∂K → Sn−1, x → NK(x) is the Gauss map and VK is the cone
measure of K.

Proposition 3.3. Let K a convex body in Rn that is C2
+. Let PK and QK

be the probability measures on ∂K defined by (20). Then

PK = N−1
K NK∗VK∗ and QK = VK ,

or, equivalently, for every measurable subset A in ∂K

PK(A) = VK∗

(
N−1
K∗
(
NK(A)

))
and QK(A) = VK(A).

13



Thus this proposition shows that the measure QK defined in (20) is the
cone measure VK of K and that the measure PK defined in (20), though a
measure on ∂K, can be viewed, in the sense of Proposition 3.3, as the “cone
measure” of K∗ modulo the respective Gauss maps.

For a convex body K in Rn that is in C2
+, we use, in the next corollaries,

also the following notations.
Let x ∈ ∂K and let ri(x), 1 ≤ i ≤ n − 1 be the principal radii of

curvature. We put

r = infx∈∂K min
1≤i≤n−1

ri(x) and R = sup
x∈∂K

max
1≤i≤n−1

ri(x). (21)

Note that if K be a convex body in Rn that is in C2
+, then 0 < r ≤ R <∞.

Note also that r = R iff K is a Euclidean ball with radius r.
For y ∈ ∂K∗, let x = x(y) ∈ ∂K be such that 〈x, y〉 = 1. Define

ent1 : ∂K∗ → R by

ent1(y) =
κK(x)−

n+2
n+1 〈x,NK(x)〉n+1

log
(

R2n|K| κK(x)
r2n|K∗| 〈x,NK(x)〉n+1

) , (22)

and ent2 : ∂K∗ → R by

ent2(y) =
κK(x)−

1
n+1

log
(

R2n|K|κK(x)
r2n|K∗|〈x,NK(x)〉n+1

) . (23)

Corollary 3.4. Let K be a convex body in Rn that is in C2
+. Let r,R be as

in (21) and ent1 as in (22).

Then

lim
t→0

|Kent1 [t]| − |K|
kn t

2
n+1

=
∫
∂K

κK(x)
〈x,NK(x)〉n

log
R2n|K|κK(x)

r2n|K∗|〈x,NK(x)〉n+1
dSK(x)

= n|K∗|
[
[DKL(PK‖QK) + 2n log

(
R

r

)]

14



Corollary 3.5. Let K be a convex body in Rn that is in C2
+. Let r,R be as

in (21) and ent2 as in (23). Then

lim
t→0

|Kent2 [t]| − |K|
kn t

2
n+1

= −
∫
∂K
〈x,NK(x)〉 log

r2n|K∗|〈x,NK(x)〉n+1

R2n|K|κK(x)
dSK(x)

= −n|K|
[
DKL(QK ||PK)− 2n log

(
R

r

)]

Proof of Corollaries 3.4 and 3.5. As ∂K is in C2
+, 0 < r ≤ R <∞ and

we have for all x ∈ ∂K that

Bn
2 (x− rNK(x), r) ⊂ K ⊂ Bn

2 (x−RNK(x), R).

Suppose first that r = R. Then K is a Euclidean ball with radius r and the
right hand sides of the identities in the corollary are equal to 0. Moreover, in
this case, ent1 and ent2 are identically equal to ∞. Therefore, for all t ≥ 0,
Kent1 [t] = K and Kent2 [t] = K and hence for all t ≥ 0, |Kent1 [t]| − |K| = 0
and |Kent2 [t]|− |K| = 0. Therefore, the corollary holds trivially in this case.

Suppose now that r < R. Then, as

1 ≤ R2n|K| κK(x)
r2n|K∗| 〈x,NK(x)〉n+1

≤
(
R

r

)4n

,

we get that the functions ent1 and ent2 satisfy the conditions of Theorem
3.1. The proof of the corollaries then follows immediately from Theorem
3.1.

In [30], the following new affine invariant ΩK was introduced and its
relation to the relative entropies was established.

Let K a convex body in Rn with centroid at the origin.

ΩK = lim
p→∞

(
Ωp(K)
n|K∗|

)n+p

.

Let pK and qK be the densities defined in (19). It was proved in [30]
that for a convex body K in Rn that is C2

+.

DKL(PK‖QK) = log
(
|K|
|K∗|

Ω
− 1
n

K

)
(24)

15



and

DKL(QK‖PK) = log
(
|K∗|
|K|

Ω
− 1
n

K∗

)
. (25)

In [30], geometric interpretations in terms of Lp-centroid bodies were
given in the case of symmetric convex bodies for the new affine invariants
ΩK . These interpretations are in the spirit of Corollary 3.2: As p → ∞,
the quantities ΩK and the related relative entropies appear in appropriately
chosen volume differences of K and its Lp-centroid bodies. However, in the
context of the Lp-centroid bodies, a second order expansion was needed for
the volume differences in order to make these terms appear. Now, it follows
from Corollaries 3.4, 3.5 and 3.6 that no symmetry assumptions are needed
and that already a first order expansion gives such geometric interpretations,
if one uses the mean width bodies instead of the Lp-centroid body.

Corollary 3.6. Let K be a convex body in Rn that is in C2
+. Let the func-

tions ent1 and ent2 be as in (22) and (23). Then

lim
t→0

|Kent1 [t]| − |K|
kn t

2
n+1

− 2n2|K∗| log
(
R

r

)
= n|K∗| log

(
|K|
|K∗|

Ω
− 1
n

K

)
.

and

lim
t→0

|Kent2 [t]| − |K|
kn t

2
n+1

− 2n2|K| log
(
R

r

)
= n|K| log

(
|K|
|K∗|

Ω
1
n
K∗

)
.

4 Proof of Theorem 3.1

To prove Theorem 3.1, we need the following lemmas. The first one, Lemma
4.1, is well known.

Lemma 4.1. Let En(x0, a) be an ellipsoid in Rn centered at x0 and with axes
parallel to the coordinate axes and of lengths a1, . . . , an. Let 0 < ∆ < an.
Let

C(En,∆) = En ∩H(x0 + (an −∆)en, en)

16



be a cap of En(x0, a) of height ∆. Then

2
n+1

2

(
1− ∆

2an

)n−1
2 |Bn−1

2 |

n+ 1

n−1∏
i=1

ai√
an

∆
n+1

2 ≤ |C(En,∆)|

≤ 2
n+1

2 |Bn−1
2 |

n+ 1

n−1∏
i=1

ai√
an

∆
n+1

2

In the next few lemmas and throughout the remainder of the paper we
will use the following notation.

Let K be a convex body in Rn. Let f : K∗ → R be an integrable function
and for t ≥ 0, let Kf [t] be a mean width body of K. For x ∈ ∂K, let

xt = {γx : γ ≥ 0} ∩ ∂Kf [t]. (26)

Let y(x) ∈ ∂K∗ be such that 〈y(x), x〉 = 1. Let m be the Lebesgue mea-
sure on Rn and let mf be the measure (on K∗) defined by mf = 2f

ω(Sn−1)
m,

i.e. for all A ⊂ K∗

mf (A) =
2

ω(Sn−1)

∫
A
f(ξ)dξ.

Lemma 4.2. Let K be a convex body in Rn that is in C2
+. Let f : K∗ → R be

an integrable function such that f(y) ≥ c for all y ∈ K∗ and some constant
c > 0. Let xt be as in (26). Then the functions

1

t
2

n+1

(
‖xt‖
‖x‖

− 1
)

are uniformly (in t) bounded by an integrable function.

Proof. We can assume that t ≤ t0 where t0 is given by Lemma 2.6. Then
Kf [t] is bounded and hence

Kf [t] ⊂ Bn
2 (0, a) (27)

for some a > 0. As f ≥ c on K∗, we get with (14)

t ≥ 2
ω(Sn−1)

∫
K∗∩H

“
xt
‖xt‖2

, x‖x‖

”− f(ξ)dξ

≥ 2c
ω(Sn−1)

∣∣∣∣K∗ ∩H−( xt
‖xt‖2

,
x

‖x‖

)∣∣∣∣ .
17



As K is in C2
+, K∗ is in C2

+. Thus, by the Blaschke rolling theorem (see [32]),
there exists r0 > 0 such that for all y ∈ ∂K∗, Bn

2 (y − r0NK∗(y), r0) ⊂ K∗.
Let now y(x) ∈ ∂K∗ be such that 〈x, y(x)〉 = 1. Then NK∗(y(x)) = x

‖x‖ and
thus

t ≥ 2c
ω(Sn−1)

∣∣∣∣Bn
2

(
y(x)− r0

x

‖x‖
, r0

)
∩H−

(
xt
‖xt‖2

,
x

‖x‖

)∣∣∣∣
≥

2
n+3

2 c r
n−1

2
0

∣∣Bn−1
2

∣∣
(n+ 1) ω(Sn−1)

(
1
‖x‖
− 1
‖xt‖

)n+1
2

,

where we have used that
∣∣∣Bn

2

(
y(x)− r0

x
‖x‖ , r0

)
∩H−

(
xt
‖xt‖2 ,

x
‖x‖

)∣∣∣ is the

volume of a cap of height 1
‖x‖−

1
‖xt‖ = ‖xt−x‖

‖xt‖‖x‖ of the ballBn
2

(
y(x)− r0

x
‖x‖ , r0

)
which we have estimated from below using Lemma 4.1. We assume also that
t is so small that 1

‖x‖ −
1
‖xt‖ < r0.

As x and xt are colinear, ‖xt‖‖x‖ − 1 = ‖xt−x‖
‖x‖ and hence

1

t
2

n+1

(
‖xt‖
‖x‖

− 1
)

=
1

t
2

n+1

‖xt − x‖
‖x‖

≤

(
(n+ 1) ω(Sn−1)

c
∣∣Bn−1

2

∣∣
) 2

n+1 r
−n−1
n+1

0

2
n+3
n+1

‖xt‖

≤

(
(n+ 1) ω(Sn−1)

c
∣∣Bn−1

2

∣∣
) 2

n+1 r
−n−1
n+1

0

2
n+3
n+1

a. (28)

In the last inequality we have used (27). The expression (28) is a constant
and thus integrable.

Lemma 4.3. Let K be a convex body in Rn that is in C2
+. Let f : K∗ → R

be a continuous, positive function. Then for all x ∈ ∂K one has

lim
t→0

〈x,NK(x)〉
n kn t

2
n+1

[(
‖xt‖
‖x‖

)n
− 1
]

=
〈x,NK(x)〉2

κK(x)
1

n+1 f(y(x))
2

n+1

,

where kn = 1
2

(
n(n+1)|Bn2 |

2|Bn−1
2 |

) 2
n+1 and y(x) ∈ ∂K∗ is such that 〈x, y(x)〉 = 1.

Proof. Let x ∈ ∂K. Let xt be as in (26). As x and xt are collinear and as
(1 + s)n ≥ 1 + ns for s ∈ [0, 1), one has for small enough t,

〈x,NK(x)〉
n

[(
‖xt‖
‖x‖

)n
− 1
]

=
〈x,NK(x)〉

n

[(
1 +
‖xt − x‖
‖x‖

)n
− 1
]
≥ ∆(x, t),

18



where ∆(x, t) =
〈

x
‖x‖ , NK(x)

〉
‖xt − x‖ = 〈xt − x,NK(x)〉.

Similarly, as (1 + s)n ≤ 1 + ns + 2ns2 for s ∈ [0, 1), one has for t small
enough,

〈x,NK(x)〉
n

[(
‖xt‖
‖x‖

)n
− 1
]
≤ ∆(x, t)

[
1 +

2n

n

(
‖xt − x‖
‖x‖

)]
. (29)

Hence for ε > 0 there exists tε ≤ t0, t0 from Lemma 2.6, such that for all
0 < t ≤ tε

1 ≤
〈x,NK(x)〉

[(
‖xt‖
‖x‖

)n
− 1
]

n ∆(x, t)
≤ 1 + ε.

By Lemma 2.6 (iii), mf (K∗ \K∗xt) = t and thus

1 ≤
〈x,NK(x)〉

[(
‖xt‖
‖x‖

)n
− 1
] (
mf (K∗ \K∗xt)

) 2
n+1

n ∆(x, t) t
2

n+1

≤ 1 + ε.

Let now y = y(x) ∈ ∂K∗ be such that 〈x, y〉 = 1. Thus y = NK(x)
〈x,NK(x)〉 and

NK∗(y) = x
‖x‖ . As f is continuous on K∗, there exists δ > 0 such that for

all z ∈ Bn
2 (y, δ),

f(y)− ε < f(z) < f(y) + ε.

We choose t so small that K∗ \K∗xt ⊂ B
n
2 (y, δ). Then

2 (f(y(x))− ε)
ω(Sn−1)

∣∣K∗ \K∗xt∣∣ ≤
mf

(
K∗ \K∗xt)

)
=

2
ω(Sn−1)

∫
K∗\K∗xt

fdξ

≤ 2 (f(y(x)) + ε)
ω(Sn−1)

∣∣K∗ \K∗xt∣∣
and we get with (new) absolute constants c1 and c2 that

1− c1ε ≤
〈x,NK(x)〉

[(
‖xt‖
‖x‖

)n
− 1
] (

2f(y(x))
ω(Sn−1)

∣∣K∗ \K∗xt∣∣) 2
n+1

n ∆(x, t) t
2

n+1

≤ 1 + c2ε. (30)

As K and hence K∗ is in C2
+, κK∗(y) > 0. It is well known (see [35])

that then there exists an ellipsoid E = E(y − anNK∗(y), a) centered at y −
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anNK∗(y) and with half axes of lengths a1, . . . , an which approximates ∂K∗

in a neighborhood of y. For the computations that follow, we can assume
without loss of generality that NK∗(y) = en and that the other axes of E
coincide with e1, . . . , en−1. Thus (see [35]), for ε > 0 given, there exists ∆ε

such that for all ∆ ≤ ∆ε

E
(
y − (1− ε)anNK∗(y), (1− ε)a

)
∩H−∆

⊆ K∗ ∩H−∆ ⊆
E
(
y − (1 + ε)anNK∗(y), (1 + ε)a

)
∩H−∆ , (31)

where H∆ = H(y −∆en, en). Also (see [35]),

κK∗(y) =
n−1∏
i=1

an
a2
i

. (32)

As xt → x as t → 0, we can choose t so small that K∗ \ K∗xt = K∗ ∩
H−

(
xt
‖xt‖2 ,

x
‖x‖

)
is contained in H−(y −∆en, en). Hence, by (31),∣∣∣∣E(y − (1− ε)anNK∗(y), (1− ε)a

)
∩H−

(
xt
‖xt‖2

,
x

‖x‖

)∣∣∣∣ ≤ ∣∣K∗ \K∗xt∣∣ ≤∣∣∣∣E(y − (1 + ε)anNK∗(y), (1 + ε)a
)
∩H−

(
xt
‖xt‖2

,
x

‖x‖

)∣∣∣∣ .
By Lemma 4.1, with (32), and as 1

‖x‖−
1
‖xt‖ = ∆(x,t)

‖xt‖〈x,NK(x)〉 , we get with new
absolute constants c1 and c2

(1− c1ε)
2
n+1

2

∣∣Bn−1
2

∣∣
(n+ 1) (κK∗(y))

1
2

(
∆(x, t)

‖xt‖〈x,NK(x)〉

)n+1
2

≤
∣∣K∗ \K∗xt∣∣ ≤

(1 + c2ε)
2
n+1

2

∣∣Bn−1
2

∣∣
(n+ 1) (κK∗(y))

1
2

(
1
‖x‖
− 1
‖xt‖

)n+1
2

= (1 + c2ε)
2
n+1

2

∣∣Bn−1
2

∣∣
(n+ 1) (κK∗(y))

1
2

(
∆(x, t)

‖xt‖〈x,NK(x)〉

)n+1
2

.

Hence, again with new absolute constants c1 and c2, (30) becomes

1− c1ε ≤
〈x,NK(x)〉

[(
‖xt‖
‖x‖

)n
− 1
]

2
(

2f(y)|Bn−1
2

(n+1)ω(Sn−1)

) 2
n+1

n t
2

n+1 (κK∗(y))
1

n+1 ‖xt‖〈x,NK(x)〉
≤ 1 + c2ε.
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Therefore, as ‖xt‖ → ‖x‖ as t→ 0,

lim
t→0

〈x,NK(x)〉
n t

2
n+1

[(
‖xt‖
‖x‖

)n
− 1
]

=

1
2

(
n(n+ 1)|Bn

2 |
2|Bn−1

2 |

) 2
n+1 κK∗(y)

1
n+1 ‖x‖〈x,NK(x)〉
f(y)

2
n+1

.

Now we use that ‖x‖ = 1
〈y,NK∗ (y)〉 and that (see e.g. [42])

κK∗(y)
1

n+1

〈y,NK∗(y)〉
=
〈x,NK(x)〉
κK(x)

1
n+1

.

We put kn = 1
2

(
n(n+1)|Bn2 |

2|Bn−1
2 |

) 2
n+1 and get that

lim
t→0

〈x,NK(x)〉
n t

2
n+1

[(
‖xt‖
‖x‖

)n
− 1
]

= kn
〈x,NK(x)〉2

κK(x)
1

n+1 f(y)
2

n+1

.

Proof of Theorem 3.1

It is well known (see e.g. [42]), that for a convex body K and a star shaped
body L with 0 ∈ int(K) and K ⊂ L

|L| − |K| = 1
n

∫
∂K
〈x,NK(x)〉

[(
‖x′‖
‖x‖

)n
− 1
]
dSK(x)

where x ∈ ∂K, x′ ∈ ∂L and x = ∂K ∩ [0, x′].
Therefore,

|Kf [t]| − |K| = 1
n

∫
∂K
〈x,NK(x)〉

((
‖xt‖
‖x‖

)n
− 1
)
dSK(x).

We now use Lemma 4.2 and Lebegue’s theorem to interchange integration
and limit and then Lemma 4.3 and get

lim
t→0

|Kf [t]| − |K|
t

2
n+1

=
1
n

lim
t→0

1

t
2

n+1

∫
∂K
〈x,NK(x)〉

[(
‖xt‖
‖x‖

)n
− 1
]
dSK(x)

=
∫
∂K

lim
t→0

〈x,NK(x)〉
n t

2
n+1

[(
‖xt‖
‖x‖

)n
− 1
]
dSK(x)

= kn

∫
∂K

〈x,NK(x)〉2

κK(x)
1

n+1 f(y)
2

n+1

dSK(x).

This finishes the proof of Theorem 3.1.
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Case Western Reserve University UFR de Mathématique
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