Relative entropies for convex bodies *

Justin Jenkinson and Elisabeth M. Werner ${ }^{\dagger}$

Abstract

We introduce a new class of (not necessarily convex) bodies and show, among other things, that these bodies provide yet another link between convex geometric analysis and information theory. Namely, they give geometric interpretations of the relative entropy of the cone measures of a convex body and its polar and related quantities.

Such interpretations were first given by Paouris and Werner for symmetric convex bodies in the context of the L_{p}-centroid bodies. There, the relative entropies appear after performing second order expansions of certain expressions. Now, no symmetry assumptions are needed. Moreover, using the new bodies, already first order expansions make the relative entropies appear. Thus, these bodies detect "faster" details of the boundary of a convex body than the L_{p}-centroid bodies.

1 Introduction.

It has been observed in recent years that there is a close connection between convex geometric analysis and information theory. An example is the parallel between geometric inequalities for convex bodies and inequalities for probability densities. For instance, the Brunn-Minkowski inequality and the entropy power inequality follow both in a very similar way from the sharp Young inequality (see. e.g., [3]).

Further connections between convexity and information theory were established by Lutwak, Yang, and Zhang ([21, 24, 26]). They showed in [24]

[^0]that the Cramer-Rao inequality corresponds to an inclusion of the Legendre ellipsoid and the polar L_{2}-projection body. The latter is a basic notion from the L_{p}-Brunn-Minkowski theory. This theory evolved rapidly over the last years and due to a number of highly influential works (see, e.g., [5], [7], [8], [10] - [29], [31], [33] - [42], [45]), it is now a central part of modern convex geometry. In fact, this affine geometry of bodies pertains to some questions that had been considered Euclidean in nature. For example, the famous Busemann-Petty Problem (finally laid to rest in [4, 6, 31, 43, 44]), was shown to be an affine problem with the introduction of intersection bodies by Lutwak in [19].

Two fundamental notions within the L_{p}-Brunn-Minkowski theory are L_{p}-affine surface areas, introduced by Lutwak in [20], and L_{p}-centroid bodies introduced by Lutwak and Zhang in [22]. See Section 3 for the definition of those quantities. Based on these quantities, Paouris and Werner [30] established yet another relation between affine convex geometry and information theory. They proved that the exponential of the relative entropy of the cone measures of a symmetric convex body and its polar equals a limit of normalized L_{p}-affine surface areas. Moreover, they introduce a new affine invariant quantity Ω_{K} (see also Section 3 for the definition).

Here we introduce a new class of (not necessarily convex) bodies which we call mean width bodies. We describe some of their properties. For instance, we show that they are always star shaped and that they provide geometric interpretations of L_{p}-affine surface areas. Many such geometric interpretations have been given (see e.g. [28, 35, 36, 40, 41, 42]). The twist here is that these new geometric interpretations of affine invariants for convex bodies are expressed in terms of not necessarily convex bodies (see also [42]).

More importantly, these bodies provide yet another link between convex geometric analysis and information theory: The main result of the paper shows that these new bodies give geometric interpretations of both, the relative entropy of the cone measures of a not necessarily symmetric convex body and its polar and the quantity Ω_{K}. Such interpretations were first given by Paouris and Werner [30] only for symmetric convex bodies in the context of the L_{p}-centroid bodies. There the relative entropies appear after performing a second order expansion of certain expressions. The remarkable fact now is that, using the mean width bodies, already a first order expansion makes them appear. Thus, these new bodies detect "faster" details of the boundary of a convex body than the L_{p}-centroid bodies.

1.1 Notation

We work in \mathbb{R}^{n}, which is equipped with a Euclidean structure $\langle\cdot, \cdot\rangle$. We denote by $\|\cdot\|_{2}$ the corresponding Euclidean norm. $B_{2}^{n}(x, r)$ is the Euclidean ball centered at x with radius r. We write $B_{2}^{n}=B_{2}^{n}(0,1)$ for the Euclidean unit ball centered at 0 and S^{n-1} for the unit sphere. Volume is denoted by $|\cdot|$. Some of our definitions, the below L_{p}-affine surface area among them, require a fixed reference point. Thus, throughout the paper, we will assume without loss of generality that the centroid of a convex body K in \mathbb{R}^{n} is at the origin. $K^{*}=\left\{y \in \mathbb{R}^{n}:\langle x, y\rangle \leq 1\right.$ for all $\left.x \in K\right\}$ is the polar body of K. The normalized cone measure V_{K} on ∂K, the boundary of K, is defined as follows: For every measurable set $A \subseteq \partial K$

$$
V_{K}(A)=\frac{1}{|K|}|\{t a: a \in A, t \in[0,1]\}| .
$$

Let L be a subset of \mathbb{R}^{n} that contains 0 . Then L is called star shaped, if the line segment $[0, x] \subset L$ for all $x \in L$.

We write $K \in C_{+}^{2}$, if K has C^{2} boundary ∂K with everywhere strictly positive Gaussian curvature κ_{K}. For a point $x \in \partial K, N_{K}(x)$ is the outer unit normal at x to $K . S_{K}$ is the usual surface area measure on ∂K. The usual surface area measure on S^{n-1} is denoted by $\omega . \sigma$ is its normalization: $\sigma(A)=\frac{\omega(A)}{\omega\left(S^{n-1}\right)}$ for all Borel measurable sets $A \subset S^{n-1}$.

For u and x in $\mathbb{R}^{n}, H=H(x, \xi)$ is the hyperplane through x orthogonal to ξ. $H^{+}=H^{+}(x, \xi)=\left\{y \in \mathbb{R}^{n}:\langle y, \xi\rangle \geq\langle x, \xi\rangle\right\}$ and $H^{-}=H^{-}(x, \xi)=$ $\left\{y \in \mathbb{R}^{n}:\langle y, \xi\rangle \leq\langle x, \xi\rangle\right\}$ are the two closed half spaces generated by H.

Let K be a convex body in \mathbb{R}^{n} and let $u \in S^{n-1}$. Then $h_{K}(u)$ is the support function of direction $u \in S^{n-1}$, and $f_{K}(u)$ is the curvature function, i.e. the reciprocal of the Gaussian curvature $\kappa_{K}(x)$ at this point $x \in \partial K$ that has u as outer normal. The mean width $W(K)$ of a convex body K in \mathbb{R}^{n} is defined as

$$
W(K)=2 \int_{S^{n-1}} h_{K}(u) d \sigma(u) .
$$

For a convex body K in \mathbb{R}^{n} of volume 1 and $1 \leq p \leq \infty$, the L_{p}-centroid body $Z_{p}(K)$, introduced in [22], is this convex body that has support function

$$
h_{Z_{p}(K)}(\theta)=\left(\int_{K}|\langle x, \theta\rangle|^{p} d x\right)^{1 / p} .
$$

L_{p}-affine surface area $\Omega_{p}(K)$ of K was introduced by Lutwak in the ground breaking paper [20] for $p>1$ and for general p by Schütt and

Werner [36]. For real $p \neq-n$, we define $\Omega_{p}(K)$ as in [20] $(p>1)$ and [36] ($p<1, p \neq-n$) by

$$
\begin{equation*}
\Omega_{p}(K)=\int_{\partial K} \frac{\kappa_{K}(x)^{\frac{p}{n+p}}}{\left\langle x, N_{K}(x)\right\rangle^{\frac{n(p-1)}{n+p}}} d S_{K}(x) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega_{ \pm \infty}(K)=\int_{\partial K} \frac{\kappa_{K}(x)}{\left\langle x, N_{K}(x)\right\rangle^{n}} d S_{K}(x), \tag{2}
\end{equation*}
$$

provided the above integrals exist. In particular, for $p=0$

$$
\Omega_{0}(K)=\int_{\partial K}\left\langle x, N_{K}(x)\right\rangle d S_{K}(x)=n|K|
$$

The case $p=1$ is the classical affine surface area which is independent of the position of K in space and which goes back to Blaschke.

$$
\Omega_{1}(K)=\int_{\partial K} \kappa_{K}(x)^{\frac{1}{n+1}} d S_{K}(x)
$$

Originally a basic affine invariant from the field of affine differential geometry, it has recently attracted increased attention too (e.g. [17, 20, 27, 34, 39]).

Let (X, μ) be a measure space and let $d P=p d \mu$ and $d Q=q d \mu$ be probability measures on X that are absolutely continuous with respect to the measure μ. The Kullback-Leibler divergence or relative entropy from P to Q is defined as (see [2])

$$
\begin{equation*}
D_{K L}(P \| Q)=\int_{X} p \log \frac{p}{q} d \mu \tag{3}
\end{equation*}
$$

2 Mean width bodies.

Let K be a convex body in \mathbb{R}^{n}. It is easy to see ([9]) that the mean width of $W(K)$ can be written as

$$
\begin{equation*}
W(K)=\frac{2}{\omega\left(S^{n-1}\right)} \int_{\mathbb{R}^{n} \backslash K^{*}}\|\xi\|^{-(n+1)} d \xi \tag{4}
\end{equation*}
$$

and therefore, for convex bodies M and K with $K \subset M$,

$$
\begin{equation*}
W(M)-W(K)=\frac{2}{\omega\left(S^{n-1}\right)} \int_{K^{*} \backslash M^{*}}\|\xi\|^{-(n+1)} d \xi \tag{5}
\end{equation*}
$$

Let $f: K^{*} \rightarrow \mathbb{R}$ be a positive, integrable function. We generalize (4) to

$$
\begin{equation*}
W_{f}(K)=\frac{2}{\omega\left(S^{n-1}\right)} \int_{\mathbb{R}^{n} \backslash K^{*}} f(\xi) d \xi \tag{6}
\end{equation*}
$$

Therefore, for convex bodies M and K with $K \subset M$, (5) generalizes to

$$
\begin{equation*}
W_{f}(M)-W_{f}(K)=\frac{2}{\omega\left(S^{n-1}\right)} \int_{K^{*} \backslash M^{*}} f(\xi) d \xi \tag{7}
\end{equation*}
$$

In the following easy lemma we will need another notation.
Let $\alpha \in \mathbb{R}, \alpha \neq 0$. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a positive function. Recall that f is said to be homogeneous of degree α, if for all $r \geq 0$,

$$
f(r u)=r^{\alpha} f(u) .
$$

Lemma 2.1. Let K and M be convex bodies in \mathbb{R}^{n} such that $K \subset M$. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a positive, integrable function that is homogeneous of degree α.
(i) Let $\alpha \neq-n$. Then

$$
W_{f}(M)-W_{f}(K)=\frac{2}{(\alpha+n)} \int_{S^{n-1}} f(u)\left[\frac{1}{h_{K}^{\alpha+n}(u)}-\frac{1}{h_{M}^{\alpha+n}(u)}\right] d \sigma(u)
$$

(ii) Let $\alpha=-n$. Then

$$
W_{f}(M)-W_{f}(K)=2 \int_{S^{n-1}} f(u) \log \left[\frac{h_{M}(u)}{h_{K}(u)}\right] d \sigma(u) .
$$

Proof. We use α-homogeneity and get

$$
\begin{aligned}
W_{f}(M)-W_{f}(K) & =\frac{2}{\omega\left(S^{n-1}\right)} \int_{K^{*} \backslash M^{*}} f(\xi) d \xi \\
& =\frac{2}{\omega\left(S^{n-1}\right)} \int_{S^{n-1}} \int_{\frac{1}{h_{M}(u)}}^{\frac{1}{h_{K}(u)}} f(r u) r^{n-1} d r d \omega(u) \\
& =\frac{2}{\omega\left(S^{n-1}\right)} \int_{S^{n-1}} \int_{\frac{1}{h_{M}(u)}}^{\frac{1}{h_{K}(u)}} f(u) r^{n+\alpha-1} d r d \omega(u) .
\end{aligned}
$$

Integration then yields (i) and (ii).

If we let $f(u)=\frac{1}{h_{K}^{n}(u)}\left(\right.$ or $\left.f(u)=\frac{1}{h_{M}^{n}(u)}\right)$ in Lemma 2.1 (ii), then $f(r u)=$ $\frac{r^{-n}}{h_{K}^{n}(u)}=r^{-n} f(u)$. Thus this f is homogeneous of degree $-n$.

Consider now the measure space $(X, \mu)=\left(S^{n-1}, \omega\right)$ and for convex bodies K and M in \mathbb{R}^{n} put

$$
\begin{equation*}
p_{K}=\frac{1}{n\left|K^{*}\right| h_{K}^{n}}, \quad p_{M}=\frac{1}{n\left|M^{*}\right| h_{M}^{n}} . \tag{8}
\end{equation*}
$$

Then $d P_{K}=p_{K} d \omega$ and $d P_{M}=p_{M} d \omega$ are probability measures on S^{n-1} and Lemma 2.1 (ii) becomes

$$
\begin{aligned}
W_{\frac{1}{h_{K}^{n}}}(M)-W_{\frac{1}{h_{K}^{n}}}(K) & =\frac{2}{n}\left|K^{*}\right| \int_{S^{n-1}} \\
& \frac{1}{\left|K^{*}\right| h_{K}^{n}} \log \left(\frac{h_{M}^{n}}{h_{K}^{n}}\right) d \sigma \\
& =\frac{2\left|K^{*}\right|}{\omega\left(S^{n-1}\right)} \int_{S^{n-1}} p_{K}\left(\log \frac{p_{K}}{p_{M}}+\log \left(\frac{\left|K^{*}\right|}{\left|M^{*}\right|}\right)\right) d \omega \\
& =\frac{2\left|K^{*}\right|}{\omega\left(S^{n-1}\right)}\left(D_{K L}\left(P_{K} \| P_{M}\right)+\log \left(\frac{\left|K^{*}\right|}{\left|M^{*}\right|}\right)\right)
\end{aligned}
$$

Hence we get
Corollary 2.2. Let K and M be convex bodies in \mathbb{R}^{n} such that $K \subset M$ and let p_{K} and p_{M} be the probability densities given in (8). Then

$$
\int_{K^{*} \backslash M^{*}} \frac{1}{h_{K}^{n}(\xi)} \frac{d \xi}{\left|K^{*}\right|}=D_{K L}\left(P_{K} \| P_{M}\right)+\log \left(\frac{\left|K^{*}\right|}{\left|M^{*}\right|}\right) .
$$

We now want to apply the above considerations for a specific M. Namely, for $x \in \mathbb{R}^{n}$, let $K_{x}=[x, K]$ be the convex hull of x and K. For $x \in K$, $K_{x}=K$. Therefore, we will consider only $x \notin K$. Let $t \geq 0$ and let

$$
\begin{equation*}
K[t]=\left\{x \in \mathbb{R}^{n}: w(x) \leq t\right\} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
w(x)=W\left(K_{x}\right)-W(K)=\frac{2}{\omega\left(S^{n-1}\right)} \int_{K^{*} \backslash K_{x}^{*}}\|\xi\|^{-(n+1)} d \xi \tag{10}
\end{equation*}
$$

The bodies $K[t]$ have been used by several authors (e.g. by Böröczky and Schneider [1] and Glasauer and Gruber [9]) in connection with approximation of convex bodies by polytopes. We generalize them to the mean width bodies as follows.

Definition 2.3. Let $f: K^{*} \rightarrow \mathbb{R}$ be a positive, integrable function. Let

$$
\begin{equation*}
w_{f}(x)=W_{f}\left(K_{x}\right)-W_{f}(K)=\frac{2}{\omega\left(S^{n-1}\right)} \int_{K^{*} \backslash K_{x}^{*}} f(\xi) d \xi \tag{11}
\end{equation*}
$$

Then we call

$$
\begin{equation*}
K_{f}[t]=\left\{x \in \mathbb{R}^{n}: w_{f}(x) \leq t\right\} . \tag{12}
\end{equation*}
$$

the mean width bodies of K with respect to f.
Thus, for instance, for $\beta \in \mathbb{R}$ and $f_{\beta}(\xi)=\|\xi\|^{-\beta}$ we get

$$
\begin{equation*}
K_{f_{\beta}}[t]=\left\{x \in \mathbb{R}^{n}: \frac{2}{\omega\left(S^{n-1}\right)} \int_{K^{*} \backslash K_{x}^{*}}\|\xi\|^{-\beta} d x \leq t\right\}, \tag{13}
\end{equation*}
$$

which, in the particular case $\beta=n+1$, gives the bodies (9) above.
As $K_{x}=[x, K], K_{x}^{*}=K^{*} \cap\left\{y \in \mathbb{R}^{n}:\langle y, x\rangle \leq 1\right\}$. Thus, putting $H^{+}\left(\frac{x}{\|x\|^{2}}, x\right)=\left\{y \in \mathbb{R}^{n}:\langle y, x\rangle \leq 1\right\}, K_{x}^{*}$ is obtained from K^{*} by cutting off a cap $K^{*} \cap H^{-}\left(\frac{x}{\|x\|^{2}}, x\right)$ of K^{*} :

$$
K_{x}^{*}=K^{*} \cap H^{+}\left(\frac{x}{\|x\|^{2}}, \frac{x}{\|x\|}\right) .
$$

and

$$
K^{*} \backslash K_{x}^{*}=K^{*} \cap H^{-}\left(\frac{x}{\|x\|^{2}}, \frac{x}{\|x\|}\right) .
$$

Therefore

$$
\begin{equation*}
K_{f}[t]=\left\{x \in \mathbb{R}^{n}: \frac{2}{\omega\left(S^{n-1}\right)} \int_{K^{*} \cap H^{-}\left(\frac{x}{\|x\|^{2}}, \frac{x}{\|x\|}\right)} f(\xi) d \xi \leq t\right\} . \tag{14}
\end{equation*}
$$

Remarks 1: Properties of $K_{f}[t]$

(i) It is clear that for all f and for all $t \geq 0, K \subset K_{f}[t]$ and that $K_{f_{\beta}}[0]=K$ for all β. However, it can happen that K is a proper subset of $K_{f}[0]$.

To see that, let $K=B_{\infty}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: \max _{1 \leq i \leq n}\left|x_{i}\right| \leq 1\right\}$. Then $K^{*}=B_{1}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: \sum_{i=1}^{n}\left|x_{i}\right| \leq 1\right\}$. Define $f: B_{1}^{n} \rightarrow \mathbb{R},\left(x_{1}, \ldots, x_{n}\right) \rightarrow f\left(\left(x_{1}, \ldots, x_{n}\right)\right)$ by

$$
f(x)=\left\{\begin{array}{cc}
0, & x_{n} \geq 0 \\
1, & \text { otherwise }
\end{array}\right.
$$

Then $\left(0, \ldots, 0, \frac{3}{2}\right) \in K_{f}[0]$ but $\left(0, \ldots, 0, \frac{3}{2}\right) \notin K$.
(ii) $K_{f}[t]$ need neither be bounded nor convex. Indeed, let $K=B_{\infty}^{2}$. Define $f: B_{1}^{2} \rightarrow \mathbb{R},\left(x_{1}, x_{2}\right) \rightarrow f\left(\left(x_{1}, x_{2}\right)\right)$ by

$$
f(x)=\left\{\begin{array}{lc}
\frac{1}{2}, & x_{2} \geq 0 \\
1, & \text { otherwise }
\end{array}\right.
$$

If $t \geq \frac{1}{\pi}, K_{f}[t]=\mathbb{R}^{2}$. If $\frac{3}{4 \pi} \leq t<\frac{1}{\pi},\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{2} \geq 0\right\} \subset K_{f}[t]$. If $\frac{1}{2 \pi} \leq t<\frac{3}{4 \pi},\left\{\left(0, x_{2}\right) \in \mathbb{R}^{2}: x_{2} \geq 0\right\} \subset K_{f}[t]$. Thus $K_{f}[t]$ is unbounded in those cases. If $t<\frac{1}{2 \pi}$, then $K_{f}[t]$ is bounded.

Moreover, with the same K and $f:\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{2} \geq 0\right\} \subset K_{f}\left[\frac{3}{4 \pi}\right]$ and $\left(0,-\frac{1}{1-\sqrt{3} / 2}\right) \in K_{f}\left[\frac{3}{4 \pi}\right]$. Let $x_{0}=\left(\frac{1}{1-\sqrt{3} / 2}, \frac{-1}{1-\sqrt{3} / 2}\right)$. Then $w_{f}\left(x_{0}\right)=$ $\sqrt{3}(1-\sqrt{3} / 16)>\frac{3}{4 \pi}$. Therefore, $K_{f}\left[\frac{3}{4 \pi}\right]$ is not convex.
(iii) Formulas (11) and (14) show that to define $K_{f}[t]$, we cut off a set of "weighted volume" t of K^{*}. Thus $K_{f}[t]$ resembles the convex floating body of K^{*}.

Recall that for $0 \leq \delta \leq \frac{|K|}{2}$, the convex floating body K_{δ} of K is the intersection of all halfspaces H^{+}whose defining hyperplanes H cut off a set of volume at most δ from $K[34]$:

$$
K_{\delta}=\bigcap_{\left|H^{-} \cap K\right| \leq \delta} H^{+}
$$

For $\beta=0$, we get in formula (14),

$$
\begin{aligned}
K_{f_{0}}[t] & =\left\{x \in \mathbb{R}^{n}: \frac{2}{\omega\left(S^{n-1}\right)} \int_{K^{*} \cap H^{-}}\left(\frac{x}{\|x\|^{2}}, \frac{x}{\|x\|}\right)\right. \\
& d \xi \leq t\} \\
& =\left\{x \in \mathbb{R}^{n}:\left|K^{*} \cap H^{-}\left(\frac{x}{\|x\|^{2}}, \frac{x}{\|x\|}\right)\right| \leq \frac{t \omega\left(S^{n-1}\right)}{2}\right\}
\end{aligned}
$$

However, $K_{f_{0}}[t]$ is not a convex floating body of K^{*}.
Indeed, it is easy to see that for the Euclidean ball $B=r B_{2}^{n}$ in \mathbb{R}^{n} with radius $r, B_{f_{0}}[t]$, for small t, is a Euclidean ball with radius of order

$$
r\left(1+k_{n} r^{\frac{2 n}{n+1}} t^{\frac{2}{n+1}}\right)
$$

where $k_{n}=\frac{1}{2}\left(\frac{n(n+1)\left|B_{2}^{n}\right|}{2\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}} .\left(B^{*}\right)_{\delta}$, for small δ, is a ball with radius of order

$$
\frac{1}{r}\left(1-c_{n} r^{\frac{2 n}{n+1}} \delta^{\frac{2}{n+1}}\right)
$$

where $c_{n}=\frac{1}{2}\left(\frac{n+1}{\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}}$ (see e.g. [34]) and B_{δ}, for small δ, is a ball with radius of order

$$
r\left(1-\frac{c_{n}}{r^{\frac{2 n}{n+1}}} \delta^{\frac{2}{n+1}}\right)
$$

(see also e.g. [34]).
Also, $K_{f_{0}}[t]$ is different from the illumination body K^{δ} which, for $\delta \geq 0$, is defined as follows [39]:

$$
K^{\delta}=\left\{x \in \mathbf{R}^{n}:|\operatorname{co}[x, K] \backslash K| \leq \delta\right\} .
$$

Again, this can be seen by considering the Euclidean ball $r B_{2}^{n} \cdot\left(r B_{2}^{n}\right)^{\delta}$, for small δ, is a Euclidean ball with radius of order

$$
r\left(1+\frac{d_{n}}{r^{\frac{2 n}{n+1}}} \delta^{\frac{2}{n+1}}\right)
$$

where $d_{n}=\frac{1}{2}\left(\frac{n(n+1)}{\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}}[39]$.
We have seen that $K_{f}[t]$ need not be convex. But it is always star shaped.
Lemma 2.4. Let K be a convex body in \mathbb{R}^{n} and let $f: K^{*} \rightarrow \mathbb{R}$ be a positive, integrable function.
(i) $K_{f}[t]$ is star shaped.
(ii) $K_{f}[t]=\bigcap_{s>0} K_{f}[t+s]$.

Proof. (i) Let $x \in K_{f}[t]$ and let $y \in[0, x]$. Then $K_{y}=[y, K] \subset[x, K]=K_{x}$ and consequently $K^{*} \backslash K_{y}^{*} \subset K^{*} \backslash K_{x}^{*}$. As $f \geq 0$ on K^{*}, we therefore get

$$
\frac{2}{\omega\left(S^{n-1}\right)} \int_{K^{*} \backslash K_{y}^{*}} f(\xi) d \xi \leq \frac{2}{\omega\left(S^{n-1}\right)} \int_{K^{*} \backslash K_{x}^{*}} f(\xi) d \xi \leq t
$$

and thus $y \in K_{f}[t]$.
(ii) For all $s>0, K_{f}[t] \subset K_{f}[t+s]$. Therefore, we only need to show that $\bigcap_{s>0} K_{f}[t+s] \subset K_{f}[t]$. Let thus $x \in \bigcap_{s>0} K_{f}[t+s]$. Then for all $s>0$, $w_{f}(x) \leq t+s$. Letting $s \rightarrow 0$, we get $w_{f}(x) \leq t$.

Additional conditions on f ensure convexity of $K_{f}[t]$. This is shown in the next lemma whose proof is the same as the corresponding one in [1].

Lemma 2.5. Let K be a convex body in \mathbb{R}^{n} and let $f: S^{n-1} \rightarrow \mathbb{R}$ be a positive, integrable function that is homogeneous of degree α. Then $K_{f}[t]$ is convex for all $\alpha \leq-(n+1)$.

Proof. Let x and y be in $K_{f}[t]$ and let $0<\lambda<1$. For $t \in \mathbb{R}, t \geq 0$, the function $g(t)=t^{\gamma}$ is convex if $\gamma \geq 1$. Therefore, and as $K_{(1-\lambda) x+\lambda y} \subseteq$ $(1-\lambda) K_{x}+\lambda K_{y}$, we get for $\alpha \leq-(n+1)$
$\frac{h_{K_{(1-\lambda) x+\lambda y}}^{-(\alpha+n)}}{-(\alpha+n)} \leq \frac{\left((1-\lambda) h_{K_{x}}+\lambda h_{K_{y}}\right)^{-(\alpha+n)}}{-(\alpha+n)} \leq \frac{(1-\lambda) h_{K_{x}}^{-(\alpha+n)}+\lambda h_{K_{y}}^{-(\alpha+n)}}{-(\alpha+n)}$.
Hence for $\alpha \leq-(n+1)$,

$$
\begin{aligned}
& \frac{2}{-(\alpha+n)} \int_{S^{n-1}} f(u) h_{K_{(1-\lambda) x+\lambda y}^{-(\alpha+n)}}(u) d \sigma(u) \\
& \leq \frac{2}{-(\alpha+n)}\left[(1-\lambda) \int_{S^{n-1}} f(u) h_{K_{x}}^{-(\alpha+n)}(u) d \sigma(u)\right. \\
& \left.+\lambda \int_{S^{n-1}} f(u) h_{K_{y}}^{-(\alpha+n)}(u) d \sigma(u)\right] \\
& \leq(1-\lambda)\left[\frac{2}{-(\alpha+n)} \int_{S^{n-1}} f(u) h_{K}^{-(\alpha+n)}(u) d \sigma(u)+t\right] \\
& \quad \quad+\lambda\left[\frac{2}{-(\alpha+n)} \int_{S^{n-1}} f(u) h_{K}^{-(\alpha+n)}(u) d \sigma(u)+t\right] \\
& =\frac{2}{-(\alpha+n)} \int_{S^{n-1}} f(u) h_{K}^{-(\alpha+n)}(u) d \sigma+t .
\end{aligned}
$$

Remark. If $\alpha>-(n+1)$, then $K_{f}[t]$ need not be convex. An example is the cube in \mathbb{R}^{2} and the f given in Remark 1 (ii).

Now we give conditions that guarantee that $K_{f}[t]$ is bounded.
Lemma 2.6. Let K be a convex body in \mathbb{R}^{n} and let $f: K^{*} \rightarrow \mathbb{R}$ be a strictly positive, integrable function. Then
(i) $K_{f}[0]=K$.
(ii) There exists t_{0} such that for all $t \leq t_{0}, K_{f}[t]$ is bounded.
(iii) Let $t \leq t_{0}$, where t_{0} is as in (ii). Then we have for all $x \in \partial K_{f}[t]$ that $w_{f}(x)=t$.

Proof.
(i) We only have to show that $K_{f}[0] \subset K$. Let $x \in K_{f}[0]$. Then $w_{f}(x)=$ $\frac{2}{\omega\left(S^{n-1}\right)} \int_{K^{*} \backslash K_{x}^{*}} f(\xi) d \xi=0$. As $f>0$ on K^{*}, this can only happen if $m\left(K^{*} \backslash\right.$ $\left.K_{x}^{*}\right)=0$. As $K_{x}^{*} \subset K^{*}$ is closed and convex, this can only happen if $K_{x}^{*}=K^{*}$, or, equivalently, $K_{x}=K$, or $x \in K$.
(ii) This follows immediately from (i), Lemma 2.4 (ii) and the fact that, as K is a convex body, there exists $\alpha>0$ such that

$$
\begin{equation*}
B_{2}^{n}(0, \alpha) \subset K \subset B_{2}^{n}\left(0, \frac{1}{\alpha}\right) . \tag{15}
\end{equation*}
$$

As $K=K_{f}[0]=\bigcap_{t>0} K_{f}[t]$, there exists t_{0} such that for all $t \leq t_{0}, K_{f}[t] \subset$ $2 K \subset B_{2}^{n}\left(0, \frac{2}{\alpha}\right)$.
(iii) Let $t \leq t_{0}$ and let $x \in \partial K_{f}[t]$. Suppose $w_{f}(x)<t$. Let $y \in\{a x$: $a \geq 1\}$. Then $K_{x}=[x, K] \subset K_{y}=[y, K]$, hence $K_{y}^{*} \subset K_{x}^{*}$ and therefore $\int_{K^{*} \backslash K_{y}^{*}} f(\xi) d \xi \geq \int_{K^{*} \backslash K_{x}^{*}} f(\xi) d \xi$. As $f>0$ on K^{*}, we can choose $y=a x$ with $a>1$ such that $\frac{2}{\omega\left(S^{n-1}\right)} \int_{K^{*} \backslash K_{y}^{*}} f(\xi) d \xi=t$. This implies that $x \notin \partial K_{f}[t]$, a contradiction.

3 Relative entropies of cone measures and affine surface areas

In this section we present new geometric interpretations of important affine invariants, namely the L_{p}-affine surface areas. Many such geometric interpretations have been given (see e.g. [28, 35, 36, 40, 41, 42]). The remarkable fact here is that these geometric interpretations of affine invariants for convex bodies are expressed in terms of not necessarily convex bodies, a phenomenon which already occurred in [42].

We also give new geometric interpretations for the relative entropies of cone measures of convex bodies. Geometric interpretations for those quantities were given first in [30] in terms of L_{p}-centroid bodies. However, in the context of the L_{p}-centroid bodies, the relative entropies appeared only after performing a second order expansion of certain expressions. Now, using the mean width bodies, already a first order expansion makes them appear. Thus, these bodies detect "faster" more detail of the boundary of a convex body than the L_{p}-centroid bodies.

Theorem 3.1. Let K be a convex body in \mathbb{R}^{n} that is in C_{+}^{2}. Let $f: K^{*} \rightarrow \mathbb{R}$ be a continuous function such that $f(y) \geq c$ for all $y \in K^{*}$ and some constant $c>0$. Then

$$
\lim _{t \rightarrow 0} \frac{\left|K_{f}[t]\right|-|K|}{k_{n} t^{\frac{2}{n+1}}}=\int_{\partial K} \frac{\left\langle x, N_{K}(x)\right\rangle^{2} d S_{K}(x)}{f(y(x)) \kappa_{K}(x)^{\frac{1}{n+1}}}
$$

$k_{n}=\frac{1}{2}\left(\frac{n(n+1)\left|B_{2}^{n}\right|}{2\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}}$ and $y(x) \in \partial K^{*}$ is such that $\langle y(x), x\rangle=1$.

Remark.

We put $N_{K}(x)=u$. Then $\left\langle x, N_{K}(x)\right\rangle=h_{K}(u)$ and $y(x)=\frac{u}{h_{K}(u)}$. As $d S_{K}=f_{K} d \omega$, we therefore also have

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\left|K_{f}[t]\right|-|K|}{k_{n} t^{\frac{2}{n+1}}}=\int_{S^{n-1}} \frac{h_{K}(u)^{2} d \omega(u)}{f_{K}(u)^{\frac{n+2}{n+1}} f\left(\frac{u}{h_{K}(u)}\right)} \tag{16}
\end{equation*}
$$

Theorem 3.1 leads to the announced new geometric interpretations of the above mentioned quantities. For that, we need the following functions. For $p \in \mathbb{R}, p \neq-n$, let $g_{\Omega_{p}}: \partial K^{*} \rightarrow \mathbb{R}$ be defined by

$$
\begin{equation*}
g_{\Omega_{p}}(y)=\left(\frac{\left\langle x, N_{K}(x)\right\rangle}{\kappa_{K}(x)^{\frac{1}{n+1}}}\right)^{\frac{n+p(n+2)}{n+p}} \tag{17}
\end{equation*}
$$

where, for $y \in \partial K^{*}, x=x(y) \in \partial K$ is such that $\langle x, y\rangle=1$.
For $\beta \in \mathbb{R}$, let $f_{\beta}: K^{*} \rightarrow \mathbb{R}$ be defined by

$$
\begin{equation*}
f_{\beta}(y)=\frac{1}{\|y\|^{\beta}}=\left\langle x, N_{K}(x)\right\rangle^{\beta} \tag{18}
\end{equation*}
$$

where, again, for $y \in \partial K^{*}, x=x(y) \in \partial K$ is such that $\langle x, y\rangle=1$.
Then we have

Corollary 3.2. Let K be a convex body in \mathbb{R}^{n} that is in C_{+}^{2}.
(i) For $p \in \mathbb{R}, p \neq-n$, let $g_{\Omega_{p}}$ as in (17). Then

$$
\lim _{t \rightarrow 0} \frac{\left|K_{g_{\Omega_{p}}}[t]\right|-|K|}{k_{n} t^{\frac{2}{n+1}}}=\int_{\partial K} \frac{\kappa_{K}(x)^{\frac{p}{n+p}} d S_{K}(x)}{\left\langle x, N_{K}(x)\right\rangle^{\frac{n(p-1)}{n+p}}}=\Omega_{p}(K)
$$

(ii) For $\beta \in \mathbb{R}$, let f_{β} be as in (18). Then

$$
\lim _{t \rightarrow 0} \frac{\left|K_{f_{\beta}}[t]\right|-|K|}{k_{n} t^{\frac{2}{n+1}}}=\int_{\partial K} \frac{d S_{K}(x)}{\kappa_{K}(x)^{\frac{1}{n+1}}\left\langle x, N_{K}(x)\right\rangle^{\beta-2}}
$$

Proof. As ∂K is in C_{+}^{2}, the functions $g_{\Omega_{p}}$ and f_{β} satisfy the conditions of Theorem 3.1. The proof of the corollary then follows immediately from Theorem 3.1.

Remarks

(i) For $\beta=0$, we get in Corollary 3.2 (ii) the $\Omega_{-\frac{n}{n+2}}$-affine surface area of K.
(ii) As $\kappa_{K}(r x)=r^{-(n-1)} \kappa_{K}(x)$, it makes most sense to put $f_{K}(r u)=$ $f_{r K}(u)=r^{n-1} f_{K}(u)$ and define $n-1$ to be the degree of homogeneity of the function f_{K}. Then $g_{\Omega_{p}}$ is homogeneous of degree $\frac{2 n(n+p(n+2))}{(n+1)(n+p)}$ and f_{β} is homogeneous of degree β. Thus, by Lemma 2.5, $K_{g_{\Omega_{p}}}[t]$ is convex if $-n<p \leq-n \frac{(n+1)^{2}+1}{(n+1)^{2}+n+2}$ and $K_{f_{\beta}}[t]$ is convex if $\beta \leq-(n+1)$.

Let K a convex body in \mathbb{R}^{n} that is C_{+}^{2}. Let

$$
\begin{equation*}
p_{K}(x)=\frac{\kappa_{K}(x)}{\left\langle x, N_{K}(x)\right\rangle^{n} n\left|K^{*}\right|}, \quad q_{K}(x)=\frac{\left\langle x, N_{K}(x)\right\rangle}{n|K|} . \tag{19}
\end{equation*}
$$

Then

$$
\begin{equation*}
P_{K}=p_{K} S_{K} \quad \text { and } \quad Q_{K}=q_{K} S_{K} \tag{20}
\end{equation*}
$$

are probability measures on ∂K that are absolutely continuous with respect to S_{K}.

The next proposition is well known. See e.g. [30] for a proof. There, $N_{K}: \partial K \rightarrow S^{n-1}, x \rightarrow N_{K}(x)$ is the Gauss map and V_{K} is the cone measure of K.

Proposition 3.3. Let K a convex body in \mathbb{R}^{n} that is C_{+}^{2}. Let P_{K} and Q_{K} be the probability measures on ∂K defined by (20). Then

$$
P_{K}=N_{K}^{-1} N_{K^{*}} V_{K^{*}} \text { and } Q_{K}=V_{K},
$$

or, equivalently, for every measurable subset A in ∂K

$$
P_{K}(A)=V_{K^{*}}\left(N_{K^{*}}^{-1}\left(N_{K}(A)\right)\right) \quad \text { and } \quad Q_{K}(A)=V_{K}(A) .
$$

Thus this proposition shows that the measure Q_{K} defined in (20) is the cone measure V_{K} of K and that the measure P_{K} defined in (20), though a measure on ∂K, can be viewed, in the sense of Proposition 3.3, as the "cone measure" of K^{*} modulo the respective Gauss maps.

For a convex body K in \mathbb{R}^{n} that is in C_{+}^{2}, we use, in the next corollaries, also the following notations.

Let $x \in \partial K$ and let $r_{i}(x), 1 \leq i \leq n-1$ be the principal radii of curvature. We put

$$
\begin{equation*}
r=\inf _{x \in \partial K} \min _{1 \leq i \leq n-1} r_{i}(x) \text { and } R=\sup _{x \in \partial K} \max _{1 \leq i \leq n-1} r_{i}(x) . \tag{21}
\end{equation*}
$$

Note that if K be a convex body in \mathbb{R}^{n} that is in C_{+}^{2}, then $0<r \leq R<\infty$. Note also that $r=R$ iff K is a Euclidean ball with radius r.

For $y \in \partial K^{*}$, let $x=x(y) \in \partial K$ be such that $\langle x, y\rangle=1$. Define ent $_{1}: \partial K^{*} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
e n t_{1}(y)=\frac{\kappa_{K}(x)^{-\frac{n+2}{n+1}}\left\langle x, N_{K}(x)\right\rangle^{n+1}}{\log \left(\frac{R^{2 n}|K| \kappa_{K}(x)}{r^{2 n}\left|K^{*}\right|\left\langle x, N_{K}(x)\right\rangle^{n+1}}\right)} \tag{22}
\end{equation*}
$$

and ent $t_{2}: \partial K^{*} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
e n t_{2}(y)=\frac{\kappa_{K}(x)^{-\frac{1}{n+1}}}{\log \left(\frac{R^{2 n}|K| \kappa_{K}(x)}{r^{2 n}\left|K^{*}\right|\left\langle x, N_{K}(x)\right\rangle^{n+1}}\right)} \tag{23}
\end{equation*}
$$

Corollary 3.4. Let K be a convex body in \mathbb{R}^{n} that is in C_{+}^{2}. Let r, R be as in (21) and ent ${ }_{1}$ as in (22).
Then

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\left|K_{e n t_{1}}[t]\right|-|K|}{k_{n} t^{\frac{2}{n+1}}} & =\int_{\partial K} \frac{\kappa_{K}(x)}{\left\langle x, N_{K}(x)\right\rangle^{n}} \log \frac{R^{2 n}|K| \kappa_{K}(x)}{r^{2 n}\left|K^{*}\right|\left\langle x, N_{K}(x)\right\rangle^{n+1}} d S_{K}(x) \\
& =n\left|K^{*}\right|\left[\left[D_{K L}\left(P_{K} \| Q_{K}\right)+2 n \log \left(\frac{R}{r}\right)\right]\right.
\end{aligned}
$$

Corollary 3.5. Let K be a convex body in \mathbb{R}^{n} that is in C_{+}^{2}. Let r, R be as in (21) and ent 2_{2} as in (23). Then

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{\mid K_{\text {ent }}^{2}}{}[t]|-|K| \\
& k_{n} t^{\frac{2}{n+1}}=-\int_{\partial K}\left\langle x, N_{K}(x)\right\rangle \log \frac{r^{2 n}\left|K^{*}\right|\left\langle x, N_{K}(x)\right\rangle^{n+1}}{R^{2 n}|K| \kappa_{K}(x)} d S_{K}(x) \\
&=-n|K|\left[D_{K L}\left(Q_{K}| | P_{K}\right)-2 n \log \left(\frac{R}{r}\right)\right]
\end{aligned}
$$

Proof of Corollaries 3.4 and 3.5. As ∂K is in $C_{+}^{2}, 0<r \leq R<\infty$ and we have for all $x \in \partial K$ that

$$
B_{2}^{n}\left(x-r N_{K}(x), r\right) \subset K \subset B_{2}^{n}\left(x-R N_{K}(x), R\right) .
$$

Suppose first that $r=R$. Then K is a Euclidean ball with radius r and the right hand sides of the identities in the corollary are equal to 0 . Moreover, in this case, ent t_{1} and $e n t_{2}$ are identically equal to ∞. Therefore, for all $t \geq 0$, $K_{\text {ent }}[t]=K$ and $K_{\text {ent }}^{2}[t]=K$ and hence for all $t \geq 0,\left|K_{\text {ent }}[t]\right|-|K|=0$ and $\left|K_{\text {ent }}^{2}[t]\right|-|K|=0$. Therefore, the corollary holds trivially in this case.

Suppose now that $r<R$. Then, as

$$
1 \leq \frac{R^{2 n}|K| \kappa_{K}(x)}{r^{2 n}\left|K^{*}\right|\left\langle x, N_{K}(x)\right\rangle^{n+1}} \leq\left(\frac{R}{r}\right)^{4 n}
$$

we get that the functions ent t_{1} and ent ${ }_{2}$ satisfy the conditions of Theorem 3.1. The proof of the corollaries then follows immediately from Theorem 3.1.

In [30], the following new affine invariant Ω_{K} was introduced and its relation to the relative entropies was established.
Let K a convex body in \mathbb{R}^{n} with centroid at the origin.

$$
\Omega_{K}=\lim _{p \rightarrow \infty}\left(\frac{\Omega_{p}(K)}{n\left|K^{*}\right|}\right)^{n+p} .
$$

Let p_{K} and q_{K} be the densities defined in (19). It was proved in [30] that for a convex body K in \mathbb{R}^{n} that is C_{+}^{2}.

$$
\begin{equation*}
D_{K L}\left(P_{K} \| Q_{K}\right)=\log \left(\frac{|K|}{\left|K^{*}\right|} \Omega_{K}^{-\frac{1}{n}}\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{K L}\left(Q_{K} \| P_{K}\right)=\log \left(\frac{\left|K^{*}\right|}{|K|} \Omega_{K^{*}}^{-\frac{1}{n}}\right) \tag{25}
\end{equation*}
$$

In [30], geometric interpretations in terms of L_{p}-centroid bodies were given in the case of symmetric convex bodies for the new affine invariants Ω_{K}. These interpretations are in the spirit of Corollary 3.2: As $p \rightarrow \infty$, the quantities Ω_{K} and the related relative entropies appear in appropriately chosen volume differences of K and its L_{p}-centroid bodies. However, in the context of the L_{p}-centroid bodies, a second order expansion was needed for the volume differences in order to make these terms appear. Now, it follows from Corollaries 3.4, 3.5 and 3.6 that no symmetry assumptions are needed and that already a first order expansion gives such geometric interpretations, if one uses the mean width bodies instead of the L_{p}-centroid body.

Corollary 3.6. Let K be a convex body in \mathbb{R}^{n} that is in C_{+}^{2}. Let the functions ent t_{1} and ent 2_{2} be as in (22) and (23). Then

$$
\lim _{t \rightarrow 0} \frac{\left|K_{e n t_{1}}[t]\right|-|K|}{k_{n} t^{\frac{2}{n+1}}}-2 n^{2}\left|K^{*}\right| \log \left(\frac{R}{r}\right)=n\left|K^{*}\right| \log \left(\frac{|K|}{\left|K^{*}\right|} \Omega_{K^{-\frac{1}{n}}}\right) .
$$

and

$$
\lim _{t \rightarrow 0} \frac{\mid K_{\text {ent }}^{2}}{}[t]\left|-|K| ~\left(\frac{2}{2}|K| \log \left(\frac{R}{r}\right)=n|K| \log \left(\frac{|K|}{\left|K^{*}\right|} \Omega_{K^{*}}^{\frac{1}{n}}\right) .\right.\right.
$$

4 Proof of Theorem 3.1

To prove Theorem 3.1, we need the following lemmas. The first one, Lemma 4.1, is well known.

Lemma 4.1. Let $\mathcal{E}_{n}\left(x_{0}, a\right)$ be an ellipsoid in \mathbb{R}^{n} centered at x_{0} and with axes parallel to the coordinate axes and of lengths a_{1}, \ldots, a_{n}. Let $0<\Delta<a_{n}$. Let

$$
C\left(\mathcal{E}_{n}, \Delta\right)=\mathcal{E}_{n} \cap H\left(x_{0}+\left(a_{n}-\Delta\right) e_{n}, e_{n}\right)
$$

be a cap of $\mathcal{E}_{n}\left(x_{0}, a\right)$ of height Δ. Then

$$
\begin{array}{r}
\frac{2^{\frac{n+1}{2}}\left(1-\frac{\Delta}{2 a_{n}}\right)^{\frac{n-1}{2}}\left|B_{2}^{n-1}\right|}{n+1} \prod_{i=1}^{n-1} \frac{a_{i}}{\sqrt{a_{n}}} \Delta^{\frac{n+1}{2}} \leq\left|C\left(\mathcal{E}_{n}, \Delta\right)\right| \\
\leq \frac{2^{\frac{n+1}{2}}\left|B_{2}^{n-1}\right|}{n+1} \prod_{i=1}^{n-1} \frac{a_{i}}{\sqrt{a_{n}}} \Delta^{\frac{n+1}{2}}
\end{array}
$$

In the next few lemmas and throughout the remainder of the paper we will use the following notation.

Let K be a convex body in \mathbb{R}^{n}. Let $f: K^{*} \rightarrow \mathbb{R}$ be an integrable function and for $t \geq 0$, let $K_{f}[t]$ be a mean width body of K. For $x \in \partial K$, let

$$
\begin{equation*}
x_{t}=\{\gamma x: \gamma \geq 0\} \cap \partial K_{f}[t] . \tag{26}
\end{equation*}
$$

Let $y(x) \in \partial K^{*}$ be such that $\langle y(x), x\rangle=1$. Let m be the Lebesgue measure on \mathbb{R}^{n} and let m_{f} be the measure (on K^{*}) defined by $m_{f}=\frac{2 f}{\omega\left(S^{n-1}\right)} m$, i.e. for all $A \subset K^{*}$

$$
m_{f}(A)=\frac{2}{\omega\left(S^{n-1}\right)} \int_{A} f(\xi) d \xi
$$

Lemma 4.2. Let K be a convex body in \mathbb{R}^{n} that is in C_{+}^{2}. Let $f: K^{*} \rightarrow \mathbb{R}$ be an integrable function such that $f(y) \geq c$ for all $y \in K^{*}$ and some constant $c>0$. Let x_{t} be as in (26). Then the functions

$$
\frac{1}{t^{\frac{2}{n+1}}}\left(\frac{\left\|x_{t}\right\|}{\|x\|}-1\right)
$$

are uniformly (in t) bounded by an integrable function.
Proof. We can assume that $t \leq t_{0}$ where t_{0} is given by Lemma 2.6. Then $K_{f}[t]$ is bounded and hence

$$
\begin{equation*}
K_{f}[t] \subset B_{2}^{n}(0, a) \tag{27}
\end{equation*}
$$

for some $a>0$. As $f \geq c$ on K^{*}, we get with (14)

$$
\begin{aligned}
t & \geq \frac{2}{\omega\left(S^{n-1}\right)} \int_{K^{*} \cap H\left(\frac{x_{t}}{\left\|x_{t}\right\|^{2}}, \frac{x}{x \|^{\prime}}\right)^{-}} f(\xi) d \xi \\
& \geq \frac{2 c}{\omega\left(S^{n-1}\right)}\left|K^{*} \cap H^{-}\left(\frac{x_{t}}{\left\|x_{t}\right\|^{2}}, \frac{x}{\|x\|}\right)\right| .
\end{aligned}
$$

As K is in C_{+}^{2}, K^{*} is in C_{+}^{2}. Thus, by the Blaschke rolling theorem (see [32]), there exists $r_{0}>0$ such that for all $y \in \partial K^{*}, B_{2}^{n}\left(y-r_{0} N_{K^{*}}(y), r_{0}\right) \subset K^{*}$. Let now $y(x) \in \partial K^{*}$ be such that $\langle x, y(x)\rangle=1$. Then $N_{K^{*}}(y(x))=\frac{x}{\|x\|}$ and thus

$$
\begin{aligned}
t & \geq \frac{2 c}{\omega\left(S^{n-1}\right)}\left|B_{2}^{n}\left(y(x)-r_{0} \frac{x}{\|x\|}, r_{0}\right) \cap H^{-}\left(\frac{x_{t}}{\left\|x_{t}\right\|^{2}}, \frac{x}{\|x\|}\right)\right| \\
& \geq \frac{2^{\frac{n+3}{2}} c r_{0}^{\frac{n-1}{2}}\left|B_{2}^{n-1}\right|}{(n+1) \omega\left(S^{n-1}\right)}\left(\frac{1}{\|x\|}-\frac{1}{\left\|x_{t}\right\|}\right)^{\frac{n+1}{2}},
\end{aligned}
$$

where we have used that $\left|B_{2}^{n}\left(y(x)-r_{0} \frac{x}{\|x\|}, r_{0}\right) \cap H^{-}\left(\frac{x_{t}}{\left\|x_{t}\right\|^{2}}, \frac{x}{\|x\|}\right)\right|$ is the volume of a cap of height $\frac{1}{\|x\|}-\frac{1}{\left\|x_{t}\right\|}=\frac{\left\|x_{t}-x\right\|}{\left\|x_{t}\right\|\|x\|}$ of the ball $B_{2}^{n}\left(y(x)-r_{0} \frac{x}{\|x\|}, r_{0}\right)$ which we have estimated from below using Lemma 4.1. We assume also that t is so small that $\frac{1}{\|x\|}-\frac{1}{\left\|x_{t}\right\|}<r_{0}$.

As x and x_{t} are colinear, $\frac{\left\|x_{t}\right\|}{\|x\|}-1=\frac{\left\|x_{t}-x\right\|}{\|x\|}$ and hence

$$
\begin{align*}
\frac{1}{t^{\frac{2}{n+1}}}\left(\frac{\left\|x_{t}\right\|}{\|x\|}-1\right) & =\frac{1}{t^{\frac{2}{n+1}}} \frac{\left\|x_{t}-x\right\|}{\|x\|} \leq\left(\frac{(n+1) \omega\left(S^{n-1}\right)}{c\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}} \frac{r_{0}^{-\frac{n-1}{n+1}}}{2^{\frac{n+3}{n+1}}}\left\|x_{t}\right\| \\
& \leq\left(\frac{(n+1) \omega\left(S^{n-1}\right)}{c\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}} \frac{r_{0}^{-\frac{n-1}{n+1}}}{2^{\frac{n+3}{n+1}}} a . \tag{28}
\end{align*}
$$

In the last inequality we have used (27). The expression (28) is a constant and thus integrable.

Lemma 4.3. Let K be a convex body in \mathbb{R}^{n} that is in C_{+}^{2}. Let $f: K^{*} \rightarrow \mathbb{R}$ be a continuous, positive function. Then for all $x \in \partial K$ one has

$$
\lim _{t \rightarrow 0} \frac{\left\langle x, N_{K}(x)\right\rangle}{n k_{n} t^{\frac{2}{n+1}}}\left[\left(\frac{\left\|x_{t}\right\|}{\|x\|}\right)^{n}-1\right]=\frac{\left\langle x, N_{K}(x)\right\rangle^{2}}{\kappa_{K}(x)^{\frac{1}{n+1}} f(y(x))^{\frac{2}{n+1}}},
$$

where $k_{n}=\frac{1}{2}\left(\frac{n(n+1)\left|B_{n}^{n}\right|}{2\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}}$ and $y(x) \in \partial K^{*}$ is such that $\langle x, y(x)\rangle=1$.
Proof. Let $x \in \partial K$. Let x_{t} be as in (26). As x and x_{t} are collinear and as $(1+s)^{n} \geq 1+n s$ for $s \in[0,1)$, one has for small enough t,

$$
\frac{\left\langle x, N_{K}(x)\right\rangle}{n}\left[\left(\frac{\left\|x_{t}\right\|}{\|x\|}\right)^{n}-1\right]=\frac{\left\langle x, N_{K}(x)\right\rangle}{n}\left[\left(1+\frac{\left\|x_{t}-x\right\|}{\|x\|}\right)^{n}-1\right] \geq \Delta(x, t),
$$

where $\Delta(x, t)=\left\langle\frac{x}{\|x\|}, N_{K}(x)\right\rangle\left\|x_{t}-x\right\|=\left\langle x_{t}-x, N_{K}(x)\right\rangle$.
Similarly, as $(1+s)^{n} \leq 1+n s+2^{n} s^{2}$ for $s \in[0,1)$, one has for t small enough,

$$
\begin{equation*}
\frac{\left\langle x, N_{K}(x)\right\rangle}{n}\left[\left(\frac{\left\|x_{t}\right\|}{\|x\|}\right)^{n}-1\right] \leq \Delta(x, t)\left[1+\frac{2^{n}}{n}\left(\frac{\left\|x_{t}-x\right\|}{\|x\|}\right)\right] . \tag{29}
\end{equation*}
$$

Hence for $\varepsilon>0$ there exists $t_{\varepsilon} \leq t_{0}, t_{0}$ from Lemma 2.6, such that for all $0<t \leq t_{\varepsilon}$

$$
1 \leq \frac{\left\langle x, N_{K}(x)\right\rangle\left[\left(\frac{\left\|x_{t}\right\|}{\|x\|}\right)^{n}-1\right]}{n \Delta(x, t)} \leq 1+\varepsilon .
$$

By Lemma 2.6 (iii), $m_{f}\left(K^{*} \backslash K_{x_{t}}^{*}\right)=t$ and thus

$$
1 \leq \frac{\left\langle x, N_{K}(x)\right\rangle\left[\left(\frac{\left\|x_{t}\right\|}{\|x\|}\right)^{n}-1\right]\left(m_{f}\left(K^{*} \backslash K_{x_{t}}^{*}\right)\right)^{\frac{2}{n+1}}}{n \Delta(x, t) t^{\frac{2}{n+1}}} \leq 1+\varepsilon .
$$

Let now $y=y(x) \in \partial K^{*}$ be such that $\langle x, y\rangle=1$. Thus $y=\frac{N_{K}(x)}{\left\langle x, N_{K}(x)\right\rangle}$ and $N_{K^{*}}(y)=\frac{x}{\|x\|}$. As f is continuous on K^{*}, there exists $\delta>0$ such that for all $z \in B_{2}^{n}(y, \delta)$,

$$
f(y)-\varepsilon<f(z)<f(y)+\varepsilon .
$$

We choose t so small that $K^{*} \backslash K_{x_{t}}^{*} \subset B_{2}^{n}(y, \delta)$. Then

$$
\begin{aligned}
& \frac{2(f(y(x))-\varepsilon)}{\omega\left(S^{n-1}\right)}\left|K^{*} \backslash K_{x_{t}}^{*}\right| \leq \\
&\left.m_{f}\left(K^{*} \backslash K_{x_{t}}^{*}\right)\right)= \frac{2}{\omega\left(S^{n-1}\right)} \int_{K^{*} \backslash K_{x_{t}}^{*}} f d \xi \\
& \leq \frac{2(f(y(x))+\varepsilon)}{\omega\left(S^{n-1}\right)}\left|K^{*} \backslash K_{x_{t}}^{*}\right|
\end{aligned}
$$

and we get with (new) absolute constants c_{1} and c_{2} that

$$
\begin{align*}
1-c_{1} \varepsilon & \leq \frac{\left\langle x, N_{K}(x)\right\rangle\left[\left(\frac{\left\|x_{t}\right\|}{\|x\|}\right)^{n}-1\right]\left(\frac{2 f(y(x))}{\omega\left(S^{n-1}\right)}\left|K^{*} \backslash K_{x_{t}}^{*}\right|\right)^{\frac{2}{n+1}}}{n \Delta(x, t) t^{\frac{2}{n+1}}} \\
& \leq 1+c_{2} \varepsilon . \tag{30}
\end{align*}
$$

As K and hence K^{*} is in $C_{+}^{2}, \kappa_{K^{*}}(y)>0$. It is well known (see [35]) that then there exists an ellipsoid $\mathcal{E}=\mathcal{E}\left(y-a_{n} N_{K^{*}}(y), a\right)$ centered at $y-$
$a_{n} N_{K^{*}}(y)$ and with half axes of lengths a_{1}, \ldots, a_{n} which approximates ∂K^{*} in a neighborhood of y. For the computations that follow, we can assume without loss of generality that $N_{K^{*}}(y)=e_{n}$ and that the other axes of \mathcal{E} coincide with e_{1}, \ldots, e_{n-1}. Thus (see [35]), for $\varepsilon>0$ given, there exists Δ_{ε} such that for all $\Delta \leq \Delta_{\varepsilon}$

$$
\begin{align*}
& \mathcal{E}\left(y-(1-\varepsilon) a_{n} N_{K^{*}}(y),(1-\varepsilon) a\right) \cap H_{\Delta}^{-} \\
& \subseteq K^{*} \cap H_{\Delta}^{-} \subseteq \\
& \quad \mathcal{E}\left(y-(1+\varepsilon) a_{n} N_{K^{*}}(y),(1+\varepsilon) a\right) \cap H_{\Delta}^{-}, \tag{31}
\end{align*}
$$

where $H_{\Delta}=H\left(y-\Delta e_{n}, e_{n}\right)$. Also (see [35]),

$$
\begin{equation*}
\kappa_{K^{*}}(y)=\prod_{i=1}^{n-1} \frac{a_{n}}{a_{i}^{2}} \tag{32}
\end{equation*}
$$

As $x_{t} \rightarrow x$ as $t \rightarrow 0$, we can choose t so small that $K^{*} \backslash K_{x_{t}}^{*}=K^{*} \cap$ $H^{-}\left(\frac{x_{t}}{\left\|x_{t}\right\|^{2}}, \frac{x}{\|x\|}\right)$ is contained in $H^{-}\left(y-\Delta e_{n}, e_{n}\right)$. Hence, by (31),

$$
\begin{array}{r}
\left|\mathcal{E}\left(y-(1-\varepsilon) a_{n} N_{K^{*}}(y),(1-\varepsilon) a\right) \cap H^{-}\left(\frac{x_{t}}{\left\|x_{t}\right\|^{2}}, \frac{x}{\|x\|}\right)\right| \leq\left|K^{*} \backslash K_{x_{t}}^{*}\right| \leq \\
\left|\left|\mathcal{E}\left(y-(1+\varepsilon) a_{n} N_{K^{*}}(y),(1+\varepsilon) a\right) \cap H^{-}\left(\frac{x_{t}}{\left\|x_{t}\right\|^{2}}, \frac{x}{\|x\|}\right)\right| .\right.
\end{array}
$$

By Lemma 4.1, with (32), and as $\frac{1}{\|x\|}-\frac{1}{\left\|x_{t}\right\|}=\frac{\Delta(x, t)}{\left\|x_{t}\right\|\left\langle x, N_{K}(x)\right\rangle}$, we get with new absolute constants c_{1} and c_{2}

$$
\begin{gathered}
\left(1-c_{1} \varepsilon\right) \frac{2^{\frac{n+1}{2}}\left|B_{2}^{n-1}\right|}{(n+1)\left(\kappa_{K^{*}}(y)\right)^{\frac{1}{2}}}\left(\frac{\Delta(x, t)}{\left\|x_{t}\right\|\left\langle x, N_{K}(x)\right\rangle}\right)^{\frac{n+1}{2}} \leq\left|K^{*} \backslash K_{x_{t}}^{*}\right| \leq \\
\left(1+c_{2} \varepsilon\right) \frac{2^{\frac{n+1}{2}}\left|B_{2}^{n-1}\right|}{(n+1)\left(\kappa_{K^{*}}(y)\right)^{\frac{1}{2}}}\left(\frac{1}{\|x\|}-\frac{1}{\left\|x_{t}\right\|}\right)^{\frac{n+1}{2}} \\
=\left(1+c_{2} \varepsilon\right) \frac{2^{\frac{n+1}{2}}\left|B_{2}^{n-1}\right|}{(n+1)\left(\kappa_{K^{*}}(y)\right)^{\frac{1}{2}}}\left(\frac{\Delta(x, t)}{\left\|x_{t}\right\|\left\langle x, N_{K}(x)\right\rangle}\right)^{\frac{n+1}{2}} .
\end{gathered}
$$

Hence, again with new absolute constants c_{1} and $c_{2},(30)$ becomes

$$
1-c_{1} \varepsilon \leq \frac{\left\langle x, N_{K}(x)\right\rangle\left[\left(\frac{\left\|x_{t}\right\|}{\|x\|}\right)^{n}-1\right] 2\left(\frac{2 f(y) \mid B_{2}^{n-1}}{(n+1) \omega\left(S^{n-1}\right)}\right)^{\frac{2}{n+1}}}{n t^{\frac{2}{n+1}}\left(\kappa_{K^{*}}(y)\right)^{\frac{1}{n+1}}\left\|x_{t}\right\|\left\langle x, N_{K}(x)\right\rangle} \leq 1+c_{2} \varepsilon .
$$

Therefore, as $\left\|x_{t}\right\| \rightarrow\|x\|$ as $t \rightarrow 0$,

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\left\langle x, N_{K}(x)\right\rangle}{n t^{\frac{2}{n+1}}}[& {\left[\left(\frac{\left\|x_{t}\right\|}{\|x\|}\right)^{n}-1\right]=} \\
& \frac{1}{2}\left(\frac{n(n+1)\left|B_{2}^{n}\right|}{2\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}} \frac{\kappa_{K^{*}}(y)^{\frac{1}{n+1}}\|x\|\left\langle x, N_{K}(x)\right\rangle}{f(y)^{\frac{2}{n+1}}}
\end{aligned}
$$

Now we use that $\|x\|=\frac{1}{\left\langle y, N_{K^{*}}(y)\right\rangle}$ and that (see e.g. [42])

$$
\frac{\kappa_{K^{*}}(y)^{\frac{1}{n+1}}}{\left\langle y, N_{K^{*}}(y)\right\rangle}=\frac{\left\langle x, N_{K}(x)\right\rangle}{\kappa_{K}(x)^{\frac{1}{n+1}}}
$$

We put $k_{n}=\frac{1}{2}\left(\frac{n(n+1)\left|B_{2}^{n}\right|}{2\left|B_{2}^{n-1}\right|}\right)^{\frac{2}{n+1}}$ and get that

$$
\lim _{t \rightarrow 0} \frac{\left\langle x, N_{K}(x)\right\rangle}{n t^{\frac{2}{n+1}}}\left[\left(\frac{\left\|x_{t}\right\|}{\|x\|}\right)^{n}-1\right]=k_{n} \frac{\left\langle x, N_{K}(x)\right\rangle^{2}}{\kappa_{K}(x)^{\frac{1}{n+1}} f(y)^{\frac{2}{n+1}}}
$$

Proof of Theorem 3.1

It is well known (see e.g. [42]), that for a convex body K and a star shaped body L with $0 \in \operatorname{int}(K)$ and $K \subset L$

$$
|L|-|K|=\frac{1}{n} \int_{\partial K}\left\langle x, N_{K}(x)\right\rangle\left[\left(\frac{\left\|x^{\prime}\right\|}{\|x\|}\right)^{n}-1\right] d S_{K}(x)
$$

where $x \in \partial K, x^{\prime} \in \partial L$ and $x=\partial K \cap\left[0, x^{\prime}\right]$.
Therefore,

$$
\left|K_{f}[t]\right|-|K|=\frac{1}{n} \int_{\partial K}\left\langle x, N_{K}(x)\right\rangle\left(\left(\frac{\left\|x_{t}\right\|}{\|x\|}\right)^{n}-1\right) d S_{K}(x)
$$

We now use Lemma 4.2 and Lebegue's theorem to interchange integration and limit and then Lemma 4.3 and get

$$
\begin{aligned}
\lim _{t \rightarrow 0} \frac{\left|K_{f}[t]\right|-|K|}{t^{\frac{2}{n+1}}} & =\frac{1}{n} \lim _{t \rightarrow 0} \frac{1}{t^{\frac{2}{n+1}}} \int_{\partial K}\left\langle x, N_{K}(x)\right\rangle\left[\left(\frac{\left\|x_{t}\right\|}{\|x\|}\right)^{n}-1\right] d S_{K}(x) \\
& =\int_{\partial K} \lim _{t \rightarrow 0} \frac{\left\langle x, N_{K}(x)\right\rangle}{n t^{\frac{2}{n+1}}}\left[\left(\frac{\left\|x_{t}\right\|}{\|x\|}\right)^{n}-1\right] d S_{K}(x) \\
& =k_{n} \int_{\partial K} \frac{\left\langle x, N_{K}(x)\right\rangle^{2}}{\kappa_{K}(x)^{\frac{1}{n+1}} f(y)^{\frac{2}{n+1}}} d S_{K}(x)
\end{aligned}
$$

This finishes the proof of Theorem 3.1.

References

[1] K. Böröczky Jr., R. Schneider, The mean width of circumscribed random polytopes, Canadian Math. Bull. 53 (2010), 614-628.
[2] T. Cover and J. Thomas, Elements of information theory, second ed., Wiley-Interscience, (John Wiley and Sons), Hoboken, NJ, (2006).
[3] A. Dembo, T. Cover, and J. Thomas Information theoretic inequalities, IEEETrans. Inform. Theory 37 (1991), 1501-1518.
[4] R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. 140 no. 2 (1994), 435-47.
[5] R. J. Gardner, The dual Brunn-Minkowski theory for bounded Borel sets: Dual affine quermassintegrals and inequalities, Adv. Math. 216 (2007), 358-386.
[6] R. J. Gardner, A. Koldobsky, and T. Schlumprecht, An analytical solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math. 149 no. 2 (1999), 691-703.
[7] R. J. Gardner and G. Zhang, Affine inequalities and radial mean bodies. Amer. J. Math. 120 no. 3 (1998), 505-528.
[8] E. Grinberg and G. Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc. 78 no. 3 (1999), 77-115.
[9] S. Glasauer and P. M. Gruber, Asymptotic estimates for best and stepwise approximation of convex bodies III, Forum Math. 9 (1997), 383404.
[10] C. Haberl, Blaschke valuations, Amer. J. of Math., in press
[11] C. Haberl and F. Schuster, General Lp affine isoperimetric inequalities. J. Differential Geometry 83 (2009), 1-26.
[12] C. Haberl, E. Lutwak, D. Yang and G. Zhang, The even Orlicz Minkowski problem, Adv. Math. 224 (2010), 2485-2510
[13] D. Klain, Star valuations and dual mixed volumes, Adv. Math. 121 (1996), 80-101.
[14] D. Klain, Invariant valuations on star-shaped sets, Adv. Math. 125 (1997), 95-113.
[15] M. Ludwig, Ellipsoids and matrix valued valuations, Duke Math. J. 119 (2003), 159-188.
[16] M. Ludwig, Minkowski areas and valuations, J. Differential Geometry, 86 (2010), 133-162.
[17] M. Ludwig and M. Reitzner, A Characterization of Affine Surface Area, Adv. Math. 147 (1999), 138-172.
[18] M. Ludwig and M. Reitzner, A classification of $S L(n)$ invariant valuations. Ann. of Math. 172 (2010), 1223-1271.
[19] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), 232-261.
[20] E. Lutwak, The Brunn-Minkowski-Firey theory II : Affine and geominimal surface areas, Adv. Math. 118 (1996), 244-294.
[21] E. Lutwak, D. Yang and G. Zhang, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000), 375-390.
[22] E. Lutwak and G. Zhang, Blaschke-Santaló inequalities, J. Differential Geom. 47 (1997), 1-16.
[23] E. Lutwak, D. Yang and G. Zhang, Sharp Affine L_{p} Sobolev inequalities, J. Differential Geometry 62 (2002), 17-38.
[24] E. Lutwak, D. Yang and G. Zhang, The Cramer-Rao inequality for star bodies, Duke Math. J. 112 (2002), 59-81.
[25] E. Lutwak, D. Yang and G. Zhang, Volume inequalities for subspaces of L_{p}, J. Differential Geometry 68 (2004), 159-184.
[26] E. Lutwak, D. Yang and G. Zhang, Moment-entropy inequalities, Ann. Probab. 32 (2004), 757774.
[27] M. Meyer and E. Werner, The Santaló-regions of a convex body. Transactions of the AMS 350 no.11, (1998) 4569-4591.
[28] M. Meyer and E. Werner, On the p-affine surface area. Adv. Math. 152 (2000), 288-313.
[29] F. Nazarov, F. Petrov, D. Ryabogin and A. Zvavitch, A remark on the Mahler conjecture: local minimality of the unit cube, Duke Math. J. 154, (2010), 419-430.
[30] G. Paouris and E. Werner, Relative entropy of cone measures and L_{p} centroid bodies, preprint
[31] B. Rubin and G. Zhang, Generalizations of the Busemann-Petty problem for sections of convex bodies, J. Funct. Anal. 213 (2004), 473501.
[32] R. Schneider, Convex Bodies: The Brunn-Minkowski theory. Cambridge University Press, (1993).
[33] F. Schuster, Crofton measures and Minkowski valuations, Duke Math. J. 154, (2010), 1-30.
[34] C. Schütt and E. Werner, The convex floating body. Math. Scand. 66 (1990), 275-290.
[35] C. Schütt and E. Werner, Random polytopes of points chosen from the boundary of a convex body. GAFA Seminar Notes, Lecture Notes in Mathematics, Springer-Verlag 1807 (2002), 241-422, .
[36] C. Schütt and E. Werner, Surface bodies and p-affine surface area. Adv. Math. 187 (2004), 98-145.
[37] A. Stancu, The Discrete Planar L_{0}-Minkowski Problem. Adv. Math. 167 (2002), 160-174.
[38] A. Stancu, On the number of solutions to the discrete two-dimensional L_{0}-Minkowski problem. Adv. Math. 180 (2003), 290-323.
[39] E. Werner, Illumination bodies and affine surface area, Studia Math. 110 (1994), 257-269.
[40] E. Werner, On L_{p}-affine surface areas, Indiana Univ. Math. J. 56 no. 5 (2007), 2305-2324.
[41] E. Werner and D. Ye, New L_{p} affine isoperimetric inequalities, Adv. Math. 218 no. 3 (2008), 762-780.
[42] E. Werner and D. Ye, Inequalities for mixed p-affine surface area, Math. Ann. 347 (2010), 703-737
[43] G. Zhang, Intersection bodies and Busemann-Petty inequalities in \mathbb{R}^{4}, Ann. of Math. 140 (1994), 331-346.
[44] G. Zhang, A positive answer to the Busemann-Petty problem in four dimensions, Ann. of Math. 149 (1999), 535-543.
[45] G. Zhang, New Affine Isoperimetric Inequalities, ICCM 2007, Vol. II, 239-267.

Elisabeth Werner
Department of Mathematics Case Western Reserve University
Cleveland, Ohio 44106, U. S. A.
elisabeth.werner@case.edu
Justin Jenkinson
Department of Mathematics
Case Western Reserve University
Cleveland, Ohio 44106, U. S. A.
jdj13@case.edu

Université de Lille 1
UFR de Mathématique
59655 Villeneuve d'Ascq, France

[^0]: *Keywords: relative entropy, mean width, L_{p}-affine surface area. 2010 Mathematics Subject Classification: 52A20, 53A15
 ${ }^{\dagger}$ Partially supported by an NSF grant, a FRG-NSF grant and a BSF grant

