Math 408

The Extended GCD Algorithm

Given integers A and B, Euclid's algorithm computes $D=\operatorname{gcd}(A, B)$, the greatest common divisor. Using the Extended GCD algorithm, we can also find integers x and y that satisfy the equation $A x+B y=D$. Here is an illustration of the process. Suppose $A=198061$ and $B=115948$.

row	N	q	x	y	$A x+B y$
1	198061		1	0	198061
2	115948	1	0	1	115948
3	82113	1	1	-1	82113
4	33835	2	-1	2	33835
5	14443	2	3	-5	14443
6	4949	2	-7	12	4949
7	4545	1	17	-29	4545
8	404	11	-24	41	404
9	101	4	281	-480	101
10	0		-1148	1961	0

In row 1 we see the obvious formula $A \times 1+B \times 0=A$.
In row 2 we see the obvious formula $A \times 0+B \times 1=B$.
The first step in the Euclidean algorithm is to compute $A=B q_{1}+r_{1}$. In this case $q=1$, which is recorded in column 3 of row 2 . The remainder r_{1} is 82113 , which is recorded in column 2 of line 3 . We subtract the equation in row 2 from the equation in row 1 to get the new equation $A \times 1+B \times(-1)=82113=r_{1}$.

Now we repeat the process using $115948=82113 q_{2}+r 2$ and find $q_{2}=1$ and $r_{2}=33835$. We can write r_{2} as the difference between the previous two expressions:

$$
(A \times 0-B \times 1)-1(A \times 1+B \times(-1))=A \times(-1)+B \times(2)=r_{2}=33835
$$

Row 9 gives the formula

$$
281 \times A-480 \times B=101=D
$$

Row 10 gives the equation $(-1148) A+(1961) B=0$. Note that $1148 \times 101=115948$ and $1961 \times 101=198061$. So the last line expresses the formula

$$
A \times\left(-\frac{B}{D}\right)+B \times \frac{A}{D}=0
$$

We can add any multiple of the last equation to the previous equation to get combinations of A and B equal to D. The result is the formula:

$$
(281-1148 t) 198061+(1961 t-480) 115948=101 \quad t=\cdots-2,-1,0,1,2, \ldots
$$

