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On meromorphic parameterizations
of real algebraic curves
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Abstract. A singular flat geometry may be canonically assigned to a real
algebraic curve Γ; namely, via analytic continuation of unit speed parame-
terization of the real locus ΓR. Globally, the metric ρ = |Q| = |q(z)|dzdz̄
is given by the meromorphic quadratic differential Q on Γ induced by the
standard complex form dx2 + dy2 on C

2 = {(x, y)}. By considering basic
properties of Q, we show that the condition for local arc length parame-
terization along ΓR to extend meromorphically to the complex plane is
quite restrictive: For curves of degree at most four, only lines, circles and
Bernoulli lemniscates have such meromorphic parameterizations.
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1. Introduction

Historical explanations of the term elliptic integral often begin with the com-
putation of arc length along an ellipse and elliptic functions are said, casually,
to be obtained by ‘inversion of elliptic integrals’.

Actually, such a narrative applies better to the quartic curve known as the lem-
niscate of Bernoulli. As is well known, discoveries of Count Fagnano and Euler
on the integral for arc length along the lemniscate led eventually to the addition
theorem for elliptic integrals (see [13,17]). Inversion of the lemniscatic integral,
an elliptic integral of the first kind, yields a unit speed parameterization of
the lemniscate by certain Jacobi elliptic functions—the so-called lemniscatic
functions.

But the elegant lemniscate of Bernoulli is a rare exception in this respect (and
in other ways described in [9,10]). The first paragraph notwithstanding, the
elliptic integral of the second kind for arclength along an ellipse is not likewise



106 J. C. Langer J. Geom.

globally invertible. In fact, the main point of the present paper is to explain
in geometric terms why inversion of arc length along a real algebraic curve
hardly ever leads to meromorphic coordinate functions defined on the complex
plane. To state a precise theorem to this effect, we first need to recall some
terminology from the classical theory of curves. In the meantime, a version of
the result for curves of low degree may be stated concisely:

Theorem 1.1. Let f(x, y) = 0 define an irreducible, real algebraic curve of
degree n ≤ 4 with non-trivial real locus ΓR, and let x(s), y(s), a < s < b
parameterize an arc of ΓR by unit speed: f(x(s), y(s)) = 0 and x′(s)2+y′(s)2 =1.
If x(s), y(s) extend meromorphically to all complex parameter values, ζ = s +
it ∈ C, then ΓR is a line, a circle, or a Bernoulli lemniscate.

The similar Theorem 5.7 applies to curves of arbitrary degree, but with an
additional assumption. The theorem concludes an investigation which requires
us to consider curves from a number of points of view and to visit special
topics which might nowadays be described as ‘quaint’—at least not entirely
standard. With this in mind, the present exposition is intended to provide a
relatively self-contained introduction to the relevant topics, developing heuris-
tics through key examples, explicit computations and graphics.

Before describing the organization of the paper, we list here the various nota-
tions for a curve which are meant to signal the appropriate context: Γ ⊂ C

2 is
a real, affine algebraic curve (with real locus ΓR ⊂ R

2 � C); Γ∗ ⊂ CP 2 is the
corresponding projective curve; Γ̃∗ is the underlying compact Riemann sur-
face; (Γ̃∗, Q) and (Γ̃∗, ρ) add geometric structure to the latter via Q = dzdw, a
(canonically defined) meromorphic quadratic differential. (Likewise, Q̃ = ω̃2 is
an orientable quadratic differential defined by lifting Q to a certain branched
double cover of Γ̃∗.) Since all objects are uniquely determined by ΓR, however,
we may occasionally find it expedient to deviate from such explicit notation.

In Sect. 2 we consider planar visualizations of real algebraic curves
Γ : f(x, y)=0 via arc length parameterizations x(s) + iy(s) of ΓR; here we
interpret analytic continuation to complex values of the arc length param-
eter ζ = s+ it in terms of planar curve dynamics. For key examples Γ, we give
explicit, global arc length parameterizations—or detect the failure of such a
parameterization in terms of the evolving curve developing unacceptable sin-
gularities in finite time. The examples demonstrate that isotropic coordinates,
z=x+iy, w=x−iy, are especially well suited for viewing relevant features of Γ.

Real, projective algebraic curves Γ∗ : F [X,Y,Z] = 0 are the context for Sect. 3,
where we review properties of isotropic projection—that is, projection from a
circular point c± = [1,±i, 0] onto the real plane. This discussion assigns geo-
metric meanings to: isotropic points, foci, defoci, circular foci, etc. It becomes
apparent that curves Γ∗ containing c± play a special role; in fact, singularities
of Γ∗ at c± are the main concern, eventually, in the proof of Theorem 5.7.

Beginning in Sect. 4, the underlying structure of Γ∗ as a compact Riemann
surface Γ̃∗ is required. In this context, the quadratic differential Q = dzdw
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on Γ̃∗ is defined using (essentially) notation of Sect. 2 and meromorphic exten-
sion to isolated singularities (at ideal points). Then we have access to ele-
ments of the theory of quadratic differentials on Riemann surfaces: the formula
4g − 4 = Z(Q) − P (Q), relating the numbers of zeros and poles of Q to the
genus g = g(Γ̃∗); the geometric interpretation of Q, theory of its singularities,
trajectories, etc.

In Sect. 5, the assumption on arc length parameterization x(ζ), y(ζ) is first
shown to imply Z(Q) = 0, hence, g = 0 or g = 1. An assumption limiting ‘high
order inflections’ of Γ∗ at circular points then rules out g = 1 and, with g = 0,
the three possible pole patterns—P = 4, P = 2 + 2 and P = 1 + 1 + 1 + 1—
lead to the three possible curves in the conclusion of Theorem 5.7: line, circle,
and lemniscate. Curves of degree n ≤ 4 already constitute a diverse family of
curves; but the assumption holds for all such curves, so Theorem 1.1 follows
as a corollary.

2. Basic examples and heuristics

A real, affine algebraic curve Γ ⊂ C
2 = {(x, y)} is defined by a polynomial

equation 0 = f(x, y) =
∑k

i=0

∑l
j=0 cijx

iyj , with real coefficients cij ; with
ckl �= 0,Γ has degree n = k + l. Reality of Γ may be expressed f̄ = f , where
the bar operation is defined by complex conjugation of coefficients of f .

We will also work with isotropic (conjugate) coordinates z = x + iy, w = x− iy
and the corresponding polynomial g(z, w) = f( z+w

2 , z−w
2i ). Note (x, y) ∈ R

2 ⇔
w = z̄, and the reality condition for the curve is now g(z, w) = ḡ(w, z). Casu-
ally applying the identification R

2 � C, (x, y) ↔ z = x + iy, we may regard
ΓR as a subset of C; namely, the z-locus of the equation g(z, z̄) = 0. We may
then view non-real points of Γ via isotropic projection onto the real plane,
(z, w) 	→ z ∈ C � R

2 (to be described more geometrically in Sect. 3). This is
how the examples of the present section may be graphically (if incompletely)
understood.

We will assume Γ has non-trivial real locus ΓR = Γ ∩ R
2; that is, ΓR con-

tains an arc. Such an analytic arc may be assigned an arclength parameter
s ∈ (a, b) and corresponding coordinate functions x(s), y(s), which are nec-
essarily real analytic. Replacing s by ζ = s + it, analytic continuation gives
x(ζ), y(ζ) defined on some connected domain U ⊂ C containing the interval
(a, b). Such a ‘complex arc length parameterization’ x(ζ), y(ζ)—alternatively,
z(ζ), w(ζ)—automatically satisfies:

f(x(ζ), y(ζ)) = 0, x′(ζ)2 + y′(ζ)2 = 1, ζ ∈ U (2.1)
g(z(ζ), w(ζ)) = 0, z′(ζ)w′(ζ) = 1, ζ ∈ U (2.2)

A basic question: How large can U be chosen?

For heuristics, it is useful to narrow the question by considering a pla-
nar, dynamical interpretation of the above continuation problem (effectively
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limiting the allowable domains U). We start with z(s) = x(s) + iy(s), s ∈ R,
a unit speed parameterization of the ‘initial curve’ Γ0 = ΓR; for simplicity, let
ΓR consist of a single, immersed curve. Analytic continuation to ζ = s + it 	→
z(ζ) = x(ζ) + iy(ζ), s ∈ R, −ε < t < ε then describes an evolution of analytic
curves Γt in the complex plane with initial curve Γ0 and ‘initial velocity field’
given by the unit normal along Γ0. We remark that Γt is a geodesic in the
sense of the infinite dimensional symmetric space geometry developed in [2,3].
(The initial velocity field for such a geodesic is allowed to vary in length and
to vanish as it switches between ‘inward’ and ‘outward’—so the present case
is very special.)

There is a maximal time domain −τ < t < τ , where τ is positive or infinite;
symmetry of the time domain is an automatic consequence of the underlying
symmetry of the real algebraic curve Γ. Further, there are limiting curves
Γ±τ which are necessarily singular. In fact, these singularities occur at the
(real) foci and defoci of the initial curve Γ0, to be described in the context of
projective geometry, below. For the moment, we note that such singularities
come in various flavors; in particular, the foci of a quadric are the usual ones,
while certain, more exotic, foci (e.g., the lemniscate’s foci) do not interrupt
the continuation of z(ζ).

Example. Line Let L be the complex line with equation y = 0. In conjugate
coordinates, L has equation z = w and unit speed parameterization z(ζ) =
w(ζ) = ζ, ζ ∈ C. The horizontal lines Γt : s 	→ z(s + it) = s + it describe the
curve evolution for −∞ < t < ∞. Anticipating later developments, it is use-
ful to view this on the Riemann sphere S2 ⊂ R

3, where a ‘dipole’ singularity
appears at the north pole; namely, Γt pulls back via stereographic projection
π : S2 → C ∪ {∞} to a family of circles mutually tangent at the north pole.

Example. Circle Let C be the unit circle x2+y2 = 1. With x = cos ζ, y = sin ζ,
the circle equation and unit speed condition x′2 + y′2 = 1 hold for all ζ ∈ C.
In conjugate coordinates, z = eiζ , w = e−iζ satisfy zw = 1, z′w′ = 1. The
punctured plane C \ {0} is foliated by concentric circles Γt : s 	→ zt(s) =
e−teis, −∞ < t <∞. The “missing” origin is in fact the circle’s focus. On the
Riemann sphere, π−1(Γt) has a pair of ‘simple pole’ singularities at north and
south poles.

Example. Ellipse Let E be the ellipse x2

a2 + y2

b2 = 1, 0 < b < a; in isotropic

coordinates, 0 = g(z, w) = (z+w)2

4a2 − (z−w)2

4b2 − 1. As explained in Sect. 3, the
foci ±c = ±√a2 − b2 are the z-values determined by the system 0 = g(z, w) =
gw(z, w); likewise, the defoci ±a2+b2

c of E may be obtained by solving for z in
the system 0 = g(z, w) = gz(z, w).

Using preliminary parameterization z(φ) = x(φ) + iy(φ) = a sin φ +
ib cos φ,w(φ) = x(φ) − iy(φ) = a sin φ − ib cos φ, one may compute arclength
along E as an elliptic integral of the second kind with modulus m = k2 = c2/a2:

s(φ) =
∫ √

z′w′dφ =
∫ √

a2 cos2 φ + b2 sin2 φ dφ = aE(φ,
c2

a2
) (2.3)
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Figure 1 Ring domain of the ellipse x2

25 + y2

9 = 1 with
boundary singularities at foci and defoci

The length of E is the complete elliptic integral L = 4s(π/2) = 4aE(c2/a2).
Since ds

dφ > 0, φ ∈ R, it follows that s(φ) is invertible and z(φ(s)) maps [0, L)
onto ER with unit speed.

Now let us consider analytic continuations ζ(φ), z(φ(ζ)), where complex val-
ues of ζ = s + it, φ are allowed. One finds four points at which dζ

dφ = 0.
Namely, z′ = 0 when tan φ = −ia/b, i.e., z(φ) = ±c; likewise, w′ = 0 when
tan φ = ia/b, i.e., z(φ) = ±a2+b2

c . Thus, ζ(φ) is not locally invertible near such
values of φ, and z(φ(ζ)) is not defined. In other words, foci and defoci mark
the limits of the curve evolution t 	→ z(φ(s + it)), −τ < t < τ ; that is, the
maximal time

τ = |ζ(arctan(±ia/b))− ζ(π/2)| = �[aE(arctan(ia/b),
c2

a2
)] (2.4)

may be interpreted as the time it takes to get from vertex z = a to defocus
z = a2+b2

c , or from focus z = c to z = a.

The evolving curve foliates a topological annulus A with singular boundary.
Figure 1 shows the case a = 5, b = 3, c = 4, for which the relevant dimensions
are: L = 20E(16/25) ≈ 25.5, τ = �[5E(arctan(i5/3), 16/25)] ≈ 1.66. Here, A
is in fact conformally equivalent to a round annulus 1 = r < |z| < R, where
R = e2πM is determined by the annular modulus M = 1

2π ln R
r = L

2τ ≈ 7.67.

As explained below, A corresponds, via isotropic projection, to a singular ring
domain in the Riemann surface E in the sense of [18]. Given that z(φ(ζ)) is
not globally defined, it is not surprising that the real parametrization z(φ(s))
is already awkward to represent analytically; techniques are developed in [7]
for the purpose of numerically computing global versions of Fig. 1 for real
algebraic curves.

Example. Lemniscate The equation (x2 + y2)2 = x2 − y2 defines a Bernoulli
lemniscate B. As B may be obtained by inversion (x, y) 	→ (x,−y)/(x2 + y2)
of the hyperbola x2 − y2 = 1, a rational parameterization of the genus zero
curve B is easily found: x = u+u3

1+u4 , y = u−u3

1+u4 .
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Applying the polar arclength element ds2 = dr2 + r2dθ2 to the equation r2 =
cos 2θ of B gives the famous lemniscatic integral for arclength along B:

s(r) =
∫

dr√
1− r4

= F (arcsin(r),−1) (2.5)

Historical note: In [13] one may find an account of the remarkable and little
known study by Serret of curves whose arc lengths may be similarly repre-
sented by elliptic integrals of the first kind.

Inversion of the elliptic integral of the first kind s(r) yields a Jacobi elliptic sine
function, r(s) = sn(s,−1). The present case—with parameter m = k2 = −1—
is known also as the lemniscatic sine sls = sn(s,−1). Using r = sls in x =
r cos θ, y = r sin θ, r2 = cos 2θ leads to the following arclength parameterization
of B:

x(s) =
1√
2

slsdls, y(s) =
1√
2

sls cls, 0 ≤ s ≤ 4K (2.6)

Here, cls =
√

1− sl2s,dls =
√

1 + sl2s are the lemniscatic cosine and delta
functions, and K = K(−1) is the complete elliptic integral of the first kind.
Using the formulas for cls, dls and the derivatives, d

ds sls = clsdls, d
dscls =

−slsdls, d
dsdls = slscls, one may verify that x(s), y(s) satisfy (x2 + y2)2 =

x2 − y2 and x′(s)2 + y′(s)2 = 1, as required.

In contrast to the ellipse example, the arc length parameterization 2.6 extends
meromorphically to all ζ ∈ C. For the sake of brevity, let it suffice to recall:
slζ maps the interior of the square with vertices ijK, j = 0, 1, 2, 3, conformal-
ly onto the open unit disk; slζ extends, by the Schwarz reflection principle,
to an adjacent square, which is mapped onto the exterior of the disk; fur-
ther use of the reflection principle gives slζ as a doubly periodic function
on C. Picturing a checkerboard tiling on the ζ-plane, slζ has zeros at ‘white
square centers’ (2n + 2mi)K, n,m ∈ Z, and poles at ‘black square centers’
((2n+1)+(2m+1)i)K. The coordinate functions x(ζ), y(ζ) are likewise doubly
periodic, meromorphic functions, whose mutual poles at black square centers
will be seen to correspond to ideal points of B.

For visualization, we consider again the first isotropic coordinate:

z(ζ) = x(ζ) + iy(ζ) =
1√
2

slζ(dlζ + iclζ) =

√
2 sl( 1+i

2 ζ)
1 + sl2( 1+i

2 ζ)
, ζ = s + it ∈ C

(2.7)

(The alternative expression for z(ζ) on the right is tricky to verify directly
by elliptic function identities, but follows from the above rational parame-
terization of B, as in [11].) The resulting planar curve evolution zt(s) =
z(s + it),−∞ < t < ∞, is depicted in Fig. 2, which shows the lemniscate
(initial curve) z0(s) and “evolved” curves ztj

(s), tj = jK/4, −4 ≤ j < 4.

The interpretation of Fig. 2 may seem less transparent than Fig. 1, due to
the many intersections; but these will be resolved by a more intrinsic view
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Figure 2 Lemniscate curve family zt(s) = z(s + it)

of B. One may also be concerned about the visible singularities at the lem-
niscate’s foci z = ±

√
2

2 ; but such foci represent a different type of singularity
from the ellipse foci (as explained below), and do not disrupt the curve evolu-
tion. While z(ζ) has poles at ±(1 + i)K, unexpected removable singularities
z(±(1 − i)K) = ±

√
2

2 account for the lemniscate’s foci. (Using the first for-
mula for z(ζ), Mathematica returns the incorrect value z(±(1 − i)K) = 0,
and behaves erratically at nearby points; this may be disconcerting, but is not
a serious issue for plotting Fig. 2, since Mathematica handles the alternate
expression without difficulty.)

Once again, isotropic coordinates quickly turn up clues to the continuation
problem; but the subtleties of the present example may be taken as initial
motivation for Sects. 3, 4 and 5, where algebraic curves are considered with
the benefit of projective geometry and Riemann surfaces.

Remark. We mention some interesting facts related to the above example
which are not strictly relevant: The family zt(s) is self-orthogonal; for uniform
time increments tj = jK/n, the curves ztj

(s) subdivide the lemniscate z0(s)
into arcs of equal length; the subdivision points (shown in Fig. 2 for n = 4)
are constructible by ruler and compass for precisely the same integers n =
2jp1p2 . . . pk for which the regular n-gon is constructible (here, pi = 22mi + 1
are distinct Fermat primes). We refer the interested reader to [9–11,13,14].

3. Projective curves: circular and isotropic points, foci, defoci

As just illustrated, some relevant features of a curve may not be visible within
the affine plane C

2; that is, one needs to consider also the curve’s ‘points at
infinity’. For this purpose, one introduces the complex projective plane CP 2 =
{[X,Y,Z]}; here, X,Y,Z ∈ C are not all zero, and [X,Y,Z] ∼ [λX, λY, λZ] for
any λ �= 0. Thus, a point in CP 2 is represented by a (complex) line through
the origin in C

3. The ‘finite points’ of CP 2 are identified with the affine plane
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Figure 3 Isotropic projection, foci and defoci

via (x, y) 	→ [x, y, 1] and [X,Y,Z] 	→ (X/Z, Y/Z), Z �= 0; the ideal points are
those with Z = 0.

A line in CP 2 is defined by an equation of the form AX + BY + CZ = 0,
where A,B,C ∈ C are not all zero. Except for the ideal line Z = 0, every line
is the projective completion of an affine line Ax + By + C = 0, whose ideal
point is defined by AX + BY = 0. Likewise, the homogeneous equation for
an nth degree curve Γ∗ ⊂ CP 2 is written 0 = F [X,Y,Z] = Znf(X

Z , Y
Z ); Γ∗ is

the projective completion of the affine curve f(x, y) = 0—this curve Γ is the
‘affine part’ of Γ∗. A line and an nth degree curve Γ∗ intersect in n points,
counting multiplicities; in particular, Γ∗ meets the ideal line n times.

Setting Z = 0 in the equation of a circle (X−aZ)2+(Y −bZ)2−R2Z2 = 0 gives
X2 + Y 2 = 0; thus, the two ideal points of a circle are always c± = [1,±i, 0].
Accordingly known as the circular points, c± ∈ CP 2 play a distinguished
role in the ‘metrical theory of curves’ [15]. Likewise, the features of algebraic
curves of interest here are those preserved by the group of real similarities; this
is the subgroup of the projective group PGL(3, C) preserving the real plane
and fixing the circular points. In particular, such transformations preserve the
families of isotropic lines—lines passing through c+ or c−. Such lines have
equations of the form X ± IY − z0Z = 0. This equation describes the unique
line c±p passing through c± and the point in the real plane p = [x0, y0, 1] ∈ R

2,
where z0 = x0 + iy0.

Now consider Γ∗, a real algebraic curve of degree n. To each finite point p ∈ Γ,
let c±p denote the isotropic line through c± and p. Define isotropic projections:

π± : Γ→ R
2, π±(p) = p = c±p ∩ R

2. (3.1)

It will often suffice to use just π = π+; the involution [X,Y,Z] σ↔ [X̄, Ȳ , Z̄] on
Γ∗ relates the two projections by π−(p) = π+(σ(p)).

Recall that a real curve is said to be circular if it contains the circular points
(by real symmetry, it contains both c± if it contains either). Assume (for
the next several paragraphs) that the degree n curve Γ∗ is non-singular and
non-circular. Then the situation, represented schematically in Fig. 3, may be
described as follows. All but finitely many p ∈ R

2 have preimage set π−1(p) ⊂
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Γ consisting of n distinct points, at each of which c+p meets Γ transversely and
nearby which π is locally one-to-one. Each of the m <∞ exceptions f ∈ R

2 is
a focus of Γ∗ (m ≤ n(n− 1), as will be seen shortly).

Such a focus is associated with a (positive) isotropic point f+ ∈ π−1(f) (‘point
of isotropic tangency’), where the line c+f = c+f+ meets Γ with higher multi-
plicity, and the number of distinct preimages |π−1(f)| < n is thereby reduced.
Similar comments apply to π− and corresponding (negative) isotropic points
f−, yielding the same foci f = π−(f−). Isotropic points come in pairs, f+

σ←→
f−, and foci f = π+(f+) are paired with defoci d = π+(f−) = π−(f+).

To relate present definitions to the notation of the previous section, note that
any point p ∈ C

2 is the intersection of a pair of isotropic lines: p = c+p∩c−p. If
the equations of the two lines are X+IY −z0Z = 0 and X−IY −w0Z = 0, then
the corresponding affine equations for x = X/Z, y = Y/Z are x + iy = z0 and
x−iy = w0; in other words, (affine) isotropic lines are defined simply by equat-
ing one of the isotropic coordinates to a constant: z = z0 or w = w0. In view of
the identification [x, y, 1]↔ z = x + iy, we may write z = π+(p), w = π−(p);
here we have used boldface to signify that z, w are to be regarded as points
in the real plane.

The homogeneous equation for the tangent line to Γ∗ at a nonsingular point
p is given by: FX(p)X + FY (p)Y + FZ(p)Z = 0. At an isotropic point,
(FX , FY , FZ) = λ(1,±i,−Z0) for some Z0, λ �= 0. Using 0 = F [X,Y,Z] =
Znf(X

Z , Y
Z ), a finite isotropic point is found to satisfy fx ± ify = 0. Alterna-

tively, application of the chain rule to g(z, w) = f( z+w
2 , z−w

2i ) gives gw = 0 or
gz = 0, respectively, for isotropic points f+ or f−. Thus, the method used in
the ellipse example to locate foci z = π(f+) and defoci w = π(f−) has been
explained. Not only that, we have the bound m ≤ n(n − 1) on the number
of such foci (or defoci), since Bézout’s Theorem says that the pair of curves
g = 0 and gw = 0 intersect in n(n−1) points (counting multiplicities and ideal
points). We remark that the curve gw = 0 is the first polar curve of the point
c+ with respect to the original curve g = 0.

We turn now to the circular curves, where strictly fewer than n(n− 1) foci are
to be expected. To see why, we first consider the circle:

Example. Circle An irreducible, circular quadric (n = 2) is necessarily a
circle F = (X − aZ)2 + (Y − bZ)2 −R2Z2 = 0. The two isotropic tangents
0 = FX(c±)X +FY (c±)Y +FZ(c±)Z = 2(X±iY −(a±ib)Z) intersect the real
plane at the circle’s center. All other isotropic lines meet the circle at exactly
one finite point. One may compare π+ with stereographic projection π from
north pole on the sphere; the two extend, via π+(c+) = 0 and π(n.p.) = ∞,
to 1− 1, nonsingular maps. Partly for this reason, we will not use traditional
modifiers singular or double for a focus like the circle’s (which may be said to
result from the collision of a pair of foci of an increasingly round ellipse).

Now consider a real, degree n curve Γ∗, and let 1 ≤ k ≤ n/2. Γ∗ is k-circular if
it contains c± with multiplicity k. To revisit the picture of isotropic projection,
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all but finitely many isotropic lines X±IY −z0Z = 0 intersect Γ∗ transversely
in n − k finite points. Foci are again associated with isotropic tangent lines;
but as the above example illustrates, tangency may occur at c± itself, which
may or may not be a point of ramification of π±. Either way, we will refer to
the tangent line’s intersection with the real plane as a circular focus—not a
standard term, but suiting our purposes. In case n = 2k, the even degree curve
Γ∗ is totally circular, i.e., it contains no ideal points other than c±. Totally cir-
cular curves may appear to be rather special; but understanding these curves
and their singularities at c± is of primary concern below (and singularities at
other points will be seen not to require much attention).

Totally circular quartics (n = 4) include many well-known curves such as
limaçons, cardioids, Cassinians, lemniscates, Neumann’s curve, hyperbolic
ellipses. The diversity of such quartics is suggested already by the possible
numbers of nodes δ and cusps κ consistent with the Clebsch genus formula
g = (n−1)(n−2)

2 − δ−κ. The Bernoulli lemniscate illustrates a node—a point of
transverse self-intersection—while the origin on the cardioid (x2 + y2 − x)2 =
x2 + y2 is a cusp.

More generally, a totally circular quartic is either: (a) a bicircular quartic,
which has nodes at c±; (b) a cartesian, which has cusps at c±; or (c) tangent
to the ideal line at (nonsingular) circular points. By real symmetry, singular-
ities at c± must match, and a possible third singularity must be real. With
n = 4, the genus formula g = 3 − δ − κ shows that a bicircular quartic or
cartesian has genus one if it has only the two singularities c± (δ = 2, κ = 0
or δ = 0, κ = 2), whereas Γ∗ is rational (g = 0) if it has a third singularity.
The properties of such families of quartics are studied extensively in classical
treatises (see [1, Ch. IX], [15, pp. 240–263]).

Remark. Rational quartics of types (a), (b) may in fact be obtained from
quadrics via inversion (quadratic transformation), as in the lemniscate exam-
ple. Specifically, a cartesian or bicircular quartic results, depending on whether
the point of inversion (not on the curve) is a focus of the quadric or not; in
either case, the third singularity appears at the center of inversion. The same
construction applies to higher degree curves: A real, non-circular, degree k
curve is transformed into a totally circular curve of degree n = 2k via inver-
sion about a point not on the curve. This fact will not be used directly, but
may help to put the special role of totally circular curves in perspective.

Example. Lemniscate Here we discuss foci and isotropic projection for the
lemniscate B : f(x, y) = (x2 + y2)2 − x2 + y2 = 0. First note that the ori-
gin is a node with pair of tangents represented by the lowest order term,
(y − x)(y + x) = 0. The origin is in fact a biflecnode—where each branch of
the curve has an inflection point. In fact, the line x(t) = t, y(t) = ±t meets the
lemniscate four times at the origin; three zeros of f(t,±t) = 4t4 are accounted
for by the tangent branch, the fourth by the transverse branch. One easily
verifies that there are no other finite critical points and there are no finite
isotropic points.



Vol. 100 (2011) Meromorphic parameterizations of real algebraic curves 115

The homogeneous equation F (X,Y,Z) = (X2+Y 2)2−X2Z2+Y 2Z2 = 0 shows
the lemniscate is totally circular, the circular points being the remaining two
singularities of the rational quartic B. In fact, c± are also biflecnodes—being
images of the origin under projective symmetries of the lemniscate. To see this,
introduce (homogenous) isotropic coordinates

α = X + iY, β = X − iY, η =
Z

λ
; X =

α + β

2
, Y =

α− β

2i
, Z = λη (3.2)

with λ = i
√

2 and note that 0 = F (X,Y,Z) = G(α, β, η) = α2β2+η2α2+β2η2

is an invariant equation under permutations of α, β, η (also under sign changes,
so an octahedral subgroup of PGL(3, C) acts on B, as discussed at length in
[9,10]).

In particular, the tangent line pair α2 + β2 = 0 at the origin may be sent
to the pair of tangents α2 + η2 = 0 at c+(α = η = 0); converting back to
the original coordinates, the two isotropic lines are found to intersect the real
plane at the lemniscate’s foci x = ±1/

√
2, y = 0. These are ‘circular foci’ in the

above sense, but qualitatively different from a circle’s foci: Because a tangent
line at c+ makes three point contact with its branch, a nearby isotropic line
meets the branch in two nearby points (and nowhere else, besides the double
point c+ itself). In other words, c+ accounts for the two points of ramifica-
tion for the double covering π+. The two foci π+(c+) are readily identified
in Fig. 2, the two sheets of π+ at every other point being associated with a
transverse curve-pair. (The full interpretation of the figure will be given in the
next section.)

As a further illustration of the isotropic coordinates α, β, η, we now establish
a characterization of B which we will need in Sect. 5.

Proposition 3.1. A real, trinodal quartic with biflecnodes at the circular points
c± is a Bernoulli lemniscate.

Proof. Let us use curly brackets to denote points in the above isotropic coordi-
nates. The vertices of the triangle of reference αβη = 0 are the circular points
c+ = {0, 1, 0}, c− = {1, 0, 0}, and the origin O = {0, 0, 1}. By assumption,
Γ∗ has nodes c± and, by real translation, we may take O to be the real node.
Then the equation of Γ∗ has the form:

0 = G(α, β, η) = Aβ2η2 + Bη2α2 + Cα2β2 + αβη(aα + bβ + cη) (3.3)

The vanishing of α4, β4, η4 terms is required for Γ∗ to ‘circumscribe’ the tri-
angle of reference, while the vanishing of α3, β3, η3 terms is needed for Γ∗ to
be singular at triangular vertices. The further condition ABC �= 0 must hold
in order for Γ∗ not to be decomposable.

Now consider the equation of the pair of tangents at the node c+, which is
obtained by equating the coefficient of β2 to zero: H+(α, η) = Aη2 + bαη +
Cα2 = 0. There will be a pair of independent solutions (αi, ηi), i = 1, 2 pre-
cisely when b2 − 4AC �= 0 (otherwise, c+ would be a cusp). Further, in this
case, αi �= 0 and ηi �= 0—otherwise A or C vanishes.
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For c+ to be a biflecnode, both of the tangent lines must meet Γ∗ four
times at c+ = Li(0). Substitution of the parameterized tangent lines Li(t) =
{αit, 1, ηit}, i = 1, 2 into G gives G(Li(t)) = β2H+(αi, ηi)t2 + αiηi(aαi +
cηi)t3 + Bα2

i η
2
i t4. Here, the first term vanishes, and so must the second, in

order for G(Li(t)) to vanish four times at t = 0. Further, the first factor
in the second term αiηi is nonzero. But the only solution to the nonsingu-
lar system aαi + cηi = 0, i = 1, 2 is a = c = 0. Since the same argument
applies to the biflecnode c−, it follows likewise that b = 0, so Γ∗ has equation:
Aβ2η2 + Bη2α2 + Cα2β2 = 0. Up to scaling of variables, this is the above
equation for B; in other words, the real curve Γ∗ is projectively equivalent
to B. But a real projective transformation which preserves the circular points
is a real similarity, so Γ∗ is in fact a Bernoulli lemniscate. �
Remark. The proposition gives a classical result as stated in [1,6]. Note, how-
ever, that our proof did not require the third singularity to be a node. Though
there are indeed bicircular quartics with real cusps, we have actually shown:
A real, rational quartic with biflecnodes at c± is a Bernoulli lemniscate.

4. The clinant quadratic differential Q = dzdw on Γ̃∗

The Schwarz function of a regular analytic curve Γ ⊂ C is the analytic func-
tion S(z) uniquely defined near Γ by the requirement that z̄ = S(z) holds for
z ∈ Γ. The derivative of the Schwarz function is unimodular along Γ; that is,
for z ∈ Γ, S′(z) = dz̄

dz = e−2iθ. Given an orientation along Γ, θ may be defined
as the angle between the real axis and the unit tangent vector dz

ds = T = eiθ.
The complex unit e−2iθ along Γ is called the clinant. From T = 1/

√
S′ follows

the formula for signed curvature of Γ: κ = i
2S′′/S′3/2. The theory and numer-

ous interesting applications of the Schwarz function are extensively developed
in [4] (see also [16]).

In its original context, the Schwarz function tends to be regarded locally
(near Γ), and multivalued functions are generally avoided. But in the case of
an affine algebraic curve Γ ⊂ C

2 given in isotropic coordinates by g(z, w) = 0,
it is reasonable for one to define the Schwarz function as the algebraic function
w = S(z) satisfying g(z, S(z)) = 0.

Actually, we will use the fact that an algebraic curve Γ∗ ⊂ CP 2 has an induced
structure as a compact Riemann surface Γ̃∗, and presently adopt the point of
view that the isotropic coordinates z, w define meromorphic functions on Γ̃∗.
Subsequently, taking quotient and product of the corresponding meromorphic
differentials dz, dw yields, respectively, a meromorphic ‘clinant’ function q
and quadratic differential Q on Γ̃∗. (See [5,12,18] for background on Riemann
surfaces and quadratic differentials.)

To be explicit, we use isotropic coordinates to express the meromorphic clinant

q =
dw

dz
= −g1

g2
(4.1)
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and the clinant quadratic differential ([8])

Q = qdz2 = dzdw = S′(z)dz2 = −g1

g2
dz2 = −g2

g1
dw2. (4.2)

By these formulas we are introducing useful notation, the precise meaning of
which will be addressed in the statement and proof of Proposition 4.1.

We are especially interested in the zeros and poles of Q. We denote the sin-
gular set of Q by Qsing = zeros(Q) ∪ poles(Q) ⊂ Γ̃∗ and its complement, the
regular set, by Qreg = Γ̃∗ \Qsing (notation chosen to avoid confusion with the
singular and regular sets Γ∗

sing, Γ∗
reg of Γ∗ itself.) Also, we adopt the following

notational shorthand: Given p ∈ Γ∗, let p̃ ∈ Γ̃∗ denote any one of the corre-
sponding points; on Γ∗

reg, p ↔ p̃ is a one-to-one correspondence and the tilde
may be omitted.

Proposition 4.1. Consider Γ∗ ⊂ CP 2, a real algebraic curve with the structure
of a compact Riemann surface Γ̃∗. There is a meromorphic quadratic differ-
ential Q on Γ̃∗, represented at all but finitely many points by formula 4.2.
Assuming p ∈ Γ∗ is not a circular point:

(i) p is an ideal point if and only if p̃ is a pole of Q.
(ii) If p is nonsingular, it is isotropic if and only if p̃ is a zero of Q.

Proof. Consider first a finite regular point p = (z, w) ∈ Γ; the partial deriv-
atives g1(p) = ∂g

∂z (z, w) and g2(p) = ∂g
∂w (z, w) do not both vanish. If, say,

g2(p) �= 0, then z restricts to a valid analytic coordinate near p and the equa-
tion g(z, w) = 0 implicitly defines an analytic function w = S(z) with differ-
ential dw = S′(z)dz = − g1

g2
dz near p. Likewise, if g1(p) �= 0, then w, z and

dw, dz = − g2
g1

dw define local analytic functions/differentials on Γ. It is only
a matter of re-interpretation to insert tildes—p̃ ∈ Γ̃∗, etc.—though we omit
tildes on variables, as in Formulas 4.1, 4.2.

If p is one of the finitely many singular or ideal points of Γ∗, then p̃ may be
treated as an isolated singularity of z and w. Near a finite point p ∈ Γ∗, z and
w are locally bounded and p̃ is a removable singularity; in the vicinity of a
non-circular ideal point p, z and w approach infinity and p̃ must be a pole of
both functions. Here we use the complex structure on Γ̃∗; that is, we refer z or
w to an analytic chart about p̃ ∈ Γ̃∗ in order to obtain analytic functions on
a punctured disk D◦ ⊂ C and invoke the Riemann extension theorem. (The
chart amounts to local resolution of the singularity, but all we require is that
it exists, a simpler result than the Puiseux expansion itself.)

Thus we have meromorphic functions z, w on Γ̃∗ and, in turn dz, dw,
q = dw

dz , Q = dzdw are automatically well-defined and meromorphic on Γ̃∗.
Further, Q is analytic at finite points, and has a pole of order at least four at
p̃ when p is a non-circular ideal point.

To prove (ii), consider a finite, non-singular point p ∈ Γ. Then at least one of
the last two expressions in 4.2 gives a valid local coordinate representation.
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Further, p is a positive isotropic point if and only if g1(p) �= 0, g2(p) = 0,
which is precisely the condition for the last representation to be valid with
Q(p) = 0. (We note that π+(p) is a focus, and a branch point of S(z).) On the
other hand, p is a negative isotropic point if and only if g1(p) = 0, g2(p) �= 0,
which is precisely the condition for the earlier representations to be valid with
Q(p) = 0. (In this case, π+(p) is a defocus, and S′(z) = 0.) �
Remark 4.2. The proposition does not describe singularities of Q at p̃ when p
is a finite singularity or a circular point of Γ∗. Finite singularities will be easily
ruled out for the curves of interest to us. On the other hand, singularities of Q
resulting from circular points are subtle and will require our attention in the
next section.

Next, we review some relevant definitions and results from the theory of qua-
dratic differentials on Riemann surfaces. In terms of a local coordinate z on
a Riemann surface Σ, a meromorphic quadratic differential has expression
Q = q(z)dz2 with q(z) a local meromorphic function. Under change of variable,
z = f(z̃), Q transforms like the square of an ordinary differential: q(z)dz2 =
q̃(z̃)dz̃2, where q̃(z̃) = q(f(z̃))(f ′(z̃))2. Q determines a flat geometry on Qreg

with Riemannian metric ρ = |Q| = |q(z)|dzdz̄, and an orthogonal pair of geo-
desic foliations on Qreg by horizontal and vertical trajectories of Q. Horizontal
arcs may be described by parameterized curves z(u) satisfying Q > 0, i.e.,
q(z(u)) dz

du

2
> 0. Similarly, vertical arcs are defined by Q < 0. Trajectories are

maximal arcs.

The flatness of ρ may be seen by taking a branch of the square root of Q at a
regular point to get a linear differential ω and its dual vectorfield W :

ω =
√

qdz ←→ W =
1√
q

∂

∂z
= (u + iv)

1
2

(
∂

∂x
− i

∂

∂y

)

The real vectorfields �[W ] = u ∂
∂x + v ∂

∂y and �[W ] = −v ∂
∂x + u ∂

∂y (whose inte-
gral curves are horizontal/vertical arcs) are orthonormal with respect to ρ, and
commute as a consequence of the Cauchy–Riemann equations (equivalently, ω
is closed). Actually, a meromorphic vectorfield interpretation applies globally
in the special case of an orientable quadratic differential Q = ω2 = h(z)2dz2,
whose behavior is therefore simpler.

Locally, the geometry (Qreg, ρ) is best described using a natural parameter ζ,
given by a branch of the following integral near a regular point p0 ∈ Qreg:

ζ = Φ(p) =

p∫

p0

√
Q =

p∫

p0

√
qdz (4.3)

(ζ̃ = ±ζ+const would also be a natural parameter near p0.) By the inverse
function theorem, Φ maps a small neighborhood V ⊂ Qreg of p0 conformally
onto a domain in U ⊂ C. In fact, it follows from dζ2 = Q that Φ defines an
isometry between (V, ρ) and (U, dζdζ̄); in particular, Φ takes geodesics in Σ to
straight lines in C.
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We will also want to consider the local parameterization ζ 	→ γ(ζ) obtained by
inversion of Φ. Note that restriction of γ to horizontal (vertical) lines s + it0
(s0 + it) in C gives unit speed parameterizations of horizontal (vertical) arcs
of Q. In case p0 lies on a closed horizontal trajectory, γ(ζ) extends analyt-
ically to a maximal horizontal strip S : −∞ ≤ a < �[ζ] < b ≤ ∞, and
γ : S → Qreg defines a regular infinite covering (with multivalued inverse Φ).
The image R = γ(S) is a Euclidean cylinder in (Qreg, ρ) each of whose bound-
ary components contains a critical point of Q. It is also possible for p0 to lie
on a horizontal trajectory which extends infinitely far in both directions, and
then Φ : R → S may define an isometry of Euclidean half-planes, or horizon-
tal strips. Such Euclidean domains are ‘building blocks’ which may be glued
together along critical trajectories to form the flat geometry (Qreg, ρ).

But in fact the latter geometry may reasonably be extended to include zeros
and first order poles in a singular flat geometry on the set Qfin = Σ \ Q∞
obtained by deleting only the second and higher order poles. As developed
comprehensively in [18], the theory preserves many familiar local, as well as
global, results about geodesics in Riemannian geometry (with minor excep-
tions related to first order poles). The local theory builds on normal forms
for Q, which we now recall.

The local normal form at a point p0 ∈ Σ provides a natural parameter ζ in
terms of which Q and the isometry Φ have simple representations. Excluding
even-order poles, for the moment, the following expressions for Q and Φ hold,
with ζ = 0 at p0 and 0 ≤ |ζ| < ε sufficiently small:

Q =
(n

2
+ 1

)2

ζndζ2, ζ̃ = Φ(ζ) = ζ
n
2 +1, n �= −2,−4, . . . , (4.4)

(Following [18], the scaling is chosen to make Φ simple as possible.) We note
that the two expressions are related by dζ̃2 = Q—which should not be regarded
as an even simpler form for Q; unlike the natural parameter ζ itself, ζ̃ is not
a valid local coordinate on Σ (except in the earlier case n = 0, where ζ̃ = ζ).
The normal form for even order poles is similar, except that Φ(ζ) may include
a logarithmic term.

Now we see that Q∞ is indeed the set of “infinitely distant” points of (Σ, ρ),
which need to be deleted to define the singular geometry on “finitely distant”
points (Qfin, ρ). That is, limζ→0 |Φ(ζ)| =∞ for n ≤ −2, while limζ→0 Φ(ζ) = 0
for n ≥ −1. In the same vein, the lengths of certain geodesics attached to p0

are easily computed (assuming no logarithmic term in Φ), giving L = ∞ and
L <∞ in the two cases. Namely, using the normal form 4.4, the ray ζ(r) = reiθ

is seen to be horizontal when ζnζ ′2 = (n
2 +1)2rnei(n+2)θ > 0, i.e., θ = θk = 2πk

n+2

for integers k.

The geodesic rays θ = θk are also key to the ‘local portraits’ for horizontal arcs
near critical points of Q. In the case n ≥ −1 these rays divide the neighbor-
hood |ζ| < ε into n + 2 sectors, each of which is isomorphic to the upper half
of a Euclidean disc, foliated by horizontal lines. A simple pole, for instance,
can be pictured as the vertex created by bending an index card and taping
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one half of the lower edge to the other. Likewise, a first order zero resembles
the vertex formed by three index cards whose lower edges are creased at right
angles so that each half-edge can be taped to the half-edge of another card. In
both examples, the lines on the index cards are horizontal arcs.

On the other hand, a higher order pole p0 serves as ∞, for |n| − 2 half-planes
separated by the rays θ = θk. The most familiar such portrait is that of Q = dζ

ζ4 ;
the dipole at ζ = 0 is interpreted as two half planes separated by the rays θ = 0
and θ = π. In contrast to the previous case, note that nearby horizontal trajec-
tories tend to p0 like the rays θ = θk. For the most part we have ignored cases
with logarithmic terms, but the important example Q = −dζ

ζ2 ,Φ = i ln ζ will
be discussed below, and will be seen to represent a cylindrical end of (Qfin, ρ).

Finally, we mention some basic facts about geodesics in the singular geometry
(Qfin, ρ). As in Riemannian geometry, a locally rectifiable curve c : (a, b) →
Qfin is a geodesic if it is locally length-minimizing: Any t ∈ (a, b) lies in a subin-
terval [t1, t2] ⊂ (a, b) such that L(c([t1, t2])) =

∫
c
|Q| = d(p1, p2) = inf c̃

∫
c̃
|Q|,

the competing curves c̃ ⊂ Qfin having the same endpoints pj = c(tj). We
note that the metric d(p1, p2) so defined agrees with the existing topology on
Qfin ⊂ Σ.

Now, a geodesic through a regular point p0 is mapped locally by Φ to a straight
line in the ζ-plane, i.e., it makes a fixed (counterclockwise) angle 0 ≤ ϑ < π
with the horizontal foliation: arg dζ2 = arg Q = 2ϑ = θ. More globally, the
latter equation defines a θ-trajectory (which is horizontal in case θ = 0 and
vertical in case θ = π). If c passes through the regular point p0, it follows that
c coincides with a θ-trajectory as long as both are defined.

Unlike a θ-trajectory, however, a geodesic c(t) may pass through a zero or
first order pole, at which point, θ may jump as c(t) joins up with a new
θ-trajectory. A bit more problematically, certain pairs of points arbitrarily
close to a simple pole may be joined by two distinct shortest paths; for this
reason, many results in [18] are formulated either for holomorphic quadratic
differentials or by puncturing at such poles. However, we will require only the
following simple consequence of the local theory: Any point p0 ∈ Qfin has a
normal form neighborhood U such that p0 is joined to any other point p ∈ U
by a unique shortest geodesic—namely, a finite θ-arc (not including p0 itself,
if p0 is critical).

Applying the above constructions to Σ = Γ̃∗, Q = dzdw results in a global-
ization and geometric interpretation of the foliations Γt considered in Sect. 2.
Namely, the horizontal trajectories project isotropically to the latter foliation,
and s = �[ζ], t = �[ζ] measure, respectively, ρ-arclength along curves Γt, and
ρ-distance between these parallel geodesics. Along ΓR, ρ-arclength is the usual
planar arclength.

Concrete examples may be computed by solving an ODE system derived from
Eq. 2.2. By careful consideration of singularities and metric data associated
with Q, one can determine the full trajectory structure of Q and singular flat
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Figure 4 Ring domain and four half-planes of the ellipse

geometry of Γ̃∗. The relevant computational techniques are developed in [7],
where the various graphical examples also require judicious choice of branch
cuts defining the sheets of isotropic projection. Full plots—extending those
shown in Sect. 2—can be somewhat complicated, but are not necessary for us
to consider in detail here. Instead, we briefly describe the singular flat geom-
etry of Γ̃∗ for the curves considered in the previous sections, and use these
examples to illustrate the local portraits for horizontal arcs near the types of
Q-singularities of greatest relevance to us.

Example. Line L : g = z − w = 0 has quadratic differential Q = dz2, which
has no finite singularity. (L\p, ρ) is the Euclidean plane, foliated by horizontal
and vertical lines. Here, the ideal point p = [X,Y,Z] = [1, 0, 0] corresponds
to z̃ = 1/z = 0, where Q = −dz̃2/z̃4 has a fourth order pole; near p, the
horizontal trajectories exhibit the dipole local portrait anticipated above.

Example. Circle C : g = zw − 1 = 0 has Q = −dz2

z2 = −dw2

w2 , which has second
order poles at the circular points corresponding to z = 0, and to w = 0. (C \
{c+, c−}, ρ) is a cylinder foliated by parallels of length

∫
C |
√

Q| = ∫
C |dz/z| =

2π and by verticals which extend infinitely up and down. The local portrait
for a second order pole (with negative coefficient) is exhibited by the circles
|z| = et, obtained by isotropic projection of the horizontal trajectories.

Example. Ellipse E : g = c2(z2 + w2) − 2d2zw + 4a2b2 = 0, 0 < b < a, c =√
a2 − b2, d =

√
a2 + b2 has Q = c2z−d2w

d2z−c2wdz2 = c2w−d2z
d2w−c2z dw2 with two fourth

order poles, at the [X,Y,Z] = [a,±ib, 0], and four first order zeros, at (z, w) =
±(c, d2/c) and (z, w) = ±(d2/c, c). The poles/zeros illustrate (i) and (ii) of
Proposition 4.1. In Fig. 4 (a = 5, b = 3), one recognizes the local portraits at
the four simple zeros, where three horizontal trajectories meet at 120◦ angles;
one also sees two fourth order poles (the other two being at infinity).

In Fig. 4 we have deviated from our usual graphical method. Instead of
using isotropic projection, we have pulled back Q conformally to C, so that
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everything may be viewed on one sheet: One ring domain (compare Fig. 1)—
now interpreted as a cylinder of circumference L = 20E(16/25) ≈ 25.5 and
height h = 2τ ≈ 3.3—and four half-planes. Topologically, one may picture ER

as the equator on S2 and the cylinder as a tropical zone with ‘peaks’ at the
four zeros of Q; the four critical trajectories not part of the cylinder boundary
meet in pairs at north and south dipoles and partition the complement of the
cylinder into the four half-planes.

Example. Lemniscate B : g = 2z2w2 − z2 − w2 = 0 has exceptionally simple
Schwarz function w = S(z) = iz/

√
1− 2z2 and Q = S′(z)dz2 = i(1 −

2z2)−3/2dz2. Note Q has no zeros and it has four first order poles at the
double circular points (where z̃ = 1/z → 0, w → ±1/

√
2 or w̃ = 1/w → 0, z →

±1/
√

2). First order poles look like endpoints of arcs surrounded by ‘hairpin
turn’ trajectories. The four poles of B are joined in pairs by two critical tra-
jectories. B � S2 may be pictured as a striped pillow made from a cylinder
of circumference L(B) = 4K(−1) and height h = 2K(−1) by collapsing each
bounding circle to a critical arc.

It is natural also to consider Eq. 2.7 on the square 0 ≤ s, t < 4K, i.e., on
the underlying elliptic curve Σ, so that γ(ζ) = (z(ζ), w(ζ)) describes a double
covering of the sphere (B) by the torus (Σ), branched over the four pillow
corners. (Then z(ζ) = π+(γ(ζ)) is a fourfold covering z : Σ→ CP 1, where the
branching of π+ occurs over the two foci.)

Example. Limaçon The limaçon of Pascal is the bicuspidal quartic with equa-
tion f(x, y) = (x2 + y2 − ax)2 − b2(x2 + y2). Inverting a quadric about a
focus produces such a rational quartic with cusps at c±. The third singularity
of the resulting curve is an arcnode (complex node) for the elliptic limaçon
(0 < a < b), a (real) node for the hyperbolic limaçon (0 < b < a), and a cusp
for the cardioid (0 < a = b)—in case the quadric is a parabola.

The most importance feature of this example is that it illustrates the third
order pole of Q resulting from the cusp at c+. Q has another third order
pole at c− and two isotropic points, corresponding to the visible focus/defocus
pair—see Fig. 5—so altogether we have 0 = Z(Q)−P (Q) = 1+1−3−3 = −4,
as expected. (This example also illustrates Plücker’s formula for the class m =
n(n − 1) − 2δ − 3κ = 4—the degree of the dual curve. A cusp at c+ reduces
the number m = 4 of tangents from c+ by three, and the remaining tangency
occurs at the finite +-isotropic point, which projects to the focus.) In the figure,
the neighborhood of the circular focus is only partially filled in because it takes
infinitely many equally spaced parallel geodesics to fill up the half-plane.

For a heuristic explanation of the behavior of Q = dzdw at a cusp c±, it may
suffice to consider the origin on the familiar cuspidal cubic, y2 = x3. On the
one hand, projection z = πp from p = (0, 0) onto the line x = 1 ‘resolves the
singularity’. Namely, the line y = tx through a point (x, y) on the curve inter-
sects x = 1 at height t = πp(x, y) = y/x =

√
x. Upon inversion, one arrives at

the well-known rational parameterization for the cubic, (x(t), y(t)) = π−1
p (t) =

(t2, t3). In other words, p is a regular point for πp (dz �= 0). On the other hand,
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Figure 5 Limaçon (x2+y2−3x)2 = 25(x2+y2): Ring domain
and one half-plane (of two); focus, defocus and circular focus

projection from a point q �= p is singular at t = 0. Specifically, let q = (0, 1) (a
convenient point not on the tangent line at p), and let 1/w = πq denote projec-
tion from q onto the x-axis. Then πq(x, y) = x

1−y = t2

1−t3 is locally two-to-one
near t = 0 (dw has a third order pole). Cusps will be treated more formally
below.

5. Euclidean maps

As above, let Γ∗ ⊂ CP 2 denote an irreducible, real algebraic curve and (Γ̃∗, Q)
its underlying Riemann surface, together with the meromorphic quadratic dif-
ferential Q = dzdw = dx2 +dy2. Let U ⊂ C be a domain in the ζ-plane; points
in U are denoted ζ = s + it, and dζ2 is the standard ‘Euclidean quadratic
differential’ on U . The following definition formalizes the notion of ‘complex
arclength parameterization’.

Definition 5.1. A holomorphic map γ = (z, w) : U → Γ̃∗ will be called a
Euclidean map if Q pulls back to the Euclidean quadratic differential: dζ2 =
γ∗Q = z′(ζ)w′(ζ)dζ2. In case U = C, γ will be called a global Euclidean map.

Remarks:

1. Our notation for Q, γ, etc., uses isotropic coordinates as in Proposition 4.1;
that is, z, w are initially defined as analytic functions on the affine curve
Γ, but induce meromorphic functions on Γ̃∗. Likewise, γ = (z, w) is rep-
resented by functions z(ζ), w(ζ) which are analytic except at poles, and
uniquely determine γ = (z, w) : U → Γ̃∗, a holomorphic map: for any local
chart φ on Γ̃∗, φ(γ(ζ)) is holomorphic on its domain.
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2. A Euclidean map γ(ζ) satisfies Eq. 2.2 on V = γ−1(Γ). Therefore: (a)
γ : V → Γ ⊂ C

2 is an immersion; (b) A singularity of Γ in γ(V ) is an
ordinary multiple point; (c) γ(V ) ⊂ Qreg, that is, the image of a Euclidean
map cannot contain a finite zero of Q, p ∈ Γ (likewise for poles).

3. The immersion γ : V → Γ is a local isometry, that is, dζdζ̄ = |γ∗Q| = γ∗ρ;
in fact, ζ = γ−1(p) defines a natural parameter near any p0 ∈ γ(V ).

4. If γ(s) is any real parameterization of a regular algebraic curve ΓR by arc
length, then γ extends to a Euclidean map defined on a maximal horizon-
tal strip S : |�[ζ]| < τ ≤ ∞; the closure of γ(S) contains a critical point
of Q. For the curves L, C,B (line, circle, and lemniscate), τ =∞, i.e., γ(ζ)
is a global Euclidean map.

Proposition 5.2. The image of a global Euclidean map γ : C→ Γ̃∗ is precisely
the set of finitely distant points: γ(C) = Qfin.

Proof. Obviously γ(C) ⊂ Qfin. Since Qfin is connected and γ(C) is open, it suf-
fices to show that γ(C) is also closed in Qfin. If p0 ∈ Qfin is the limit of points
pj = γ(ζj), some pJ belongs to a normal form neighborhood U of p0, and pJ , p0

lie at the ends of a half-open θ-arc of finite length, γ(ζj + teiϑ), 0 ≤ t < L. By
continuity, γ(ζj + Leiϑ) = p0. �
Combining Propositions 4.1, 5.2, we see that the image of a global Euclidean
map γ : C → Γ̃∗ contains all finite points p ∈ Γ, but no ideal points—except
possibly circular points c± ∈ Γ∗. Also, by (2) (c), existence of γ now rules out
zeros for Q, except possibly at circular points c±.

As the lemniscate example shows, a simple pole of Q may indeed occur at a
circular point—though it necessarily belongs to γ(C). The fact that such a crit-
ical point of Q can be “masked” by γ∗ reflects the greater variety of behavior
of quadratic differentials as compared with linear meromorphic differentials.
However, the point of the following lemma is that simple poles are the only
critical points of a meromorphic quadratic differential which can be hidden by
pull-back.

Lemma 5.3. Let Q′ = h∗Q be the pull-back of a meromorphic quadratic differ-
ential Q by a holomorphic map h, p′ a regular point of Q′ and p = h(p′). Then
either:

(a) p is a regular point of Q and p′ is a regular point of h, or
(b) p is a simple pole of Q and p′ is a simple zero of dh.

Proof. We use the local normal form: Q = (n+2
2 )2ξndξ2, where ξ = 0 at p. (We

neglect cases with logarithmic term in Φ, since n ≥ −1 in our application).
Also, we use the local normal form for h: ν

h−→ ξ = νm, where ν = 0 at p′,
and dh has a zero at p′ of order m− 1 ≥ 0. Then

Q′ = h∗Q = (
n + 2

2
)2νmn(mνm−1dν)2 = m2(

n + 2
2

)2νmn+2m−2dν2
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For p′ to be a regular point of Q′, integers m ≥ 1, n must satisfy
mn + 2m− 2 = 0, i.e., m(n + 2) = 2, so (a) m = 1, n = 0, or (b) m = 2, n =
−1. �
A related, useful idea is to lift a given (Σ, Q) to an orientable quadratic differen-
tial Q̃ = ω̃2 defined on a double cover Σ̃ branched over odd-order singularities
of Q. Orders of singularities of Q̃ above even order singularities of Q will be the
same, but orders above branch points are related by ordp̃Q̃ = 2ordp(Q) + 2.
So Q̃ has only even order singularities; in particular, if ordp(Q) = −1, the
singularity at p̃ ‘disappears’.

To apply the lemma to our present situation, we assume a circular point p = c±
is not a higher order pole of Q = dzdw. If h = γ is a global Euclidean map,
p = h(p′) for some p′. It follows that p can only be a regular point or simple
pole of Q. Since we have just ruled out the remaining possibility for a zero
of Q, the first sentence of the following proposition has been established:

Proposition 5.4. If γ : C → Γ̃∗ is a global Euclidean map, Q = dzdw has no
zeros. Therefore, Γ̃∗ has genus zero or one and fits one of the following cases:

1. g(Γ̃∗) = 0 and Q has one fourth order pole p ∈ RP 2.
2. g(Γ̃∗) = 0 and Q has a pair of double poles at c̃±.
3. g(Γ̃∗) = 0 and Q has four simple poles at c̃±.
4. g(Γ̃∗) = 1 and Q has no poles.

Proof. We invoke the degree formula deg(Q) = Z(Q) − P (Q) = 4g − 4. (For
an orientable quadratic differential, this follows from the formula for ordinary
differentials, which is dual to the Poincaré–Hopf index formula for vector-
fields: deg(Q) = deg(ω2) = 2deg(ω) = 2(2g − 2). Otherwise, one may lift Q

to Q̃, as above, and take account of the Riemann–Hurwitz relation 4g̃ − 4 =
4m(g − 1) + 2B; here, m = 2 is the degree of the covering and B is the total
branching number.)

Reality of the fourth order pole in case (1) follows by symmetry, and pairing
of poles of order less than four, necessarily at c±, rules out P (Q) = 1 + 3. �
Remark 5.5. Except in case (1), Γ̃∗ is totally circular. In cases (1), (2), (4),
γ is an unbranched covering onto, respectively, Γ̃∗ \ {p} � C, a cylinder Γ̃∗ \
{c+, c−} � C/Z, or a torus Γ̃∗ � T 2. In case (3), γ factors as γ = π2◦π1, where
π1 : C→ T 2 is a regular covering (parameterization by elliptic functions) and
π2 : T 2 → Γ̃∗ is a double covering branched at four points cj

±; this corresponds
to lifting Q to Q̃, as above.

In general, the limitations on Q still allow for a wide range of behavior for
dz, dw at a circular point. Namely, dw might have a pole of order k ≥ 2 and dz
a zero of order j +k−2; then Q will have a double pole, simple pole or regular
point, respectively, for j = 0, 1, 2—consistent with the proposition. Here, the
higher order zeros of dz are made possible by a high order of contact of a tan-
gent line with a branch of Γ∗. It will be convenient to adopt a classical term
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for such ‘higher order inflection points’ (though traditional usage is sometimes
restricted to regular points, such as the origin on the curve y = x4):

Definition 5.6. A point p ∈ Γ∗ will be called an undulation point when at least
one tangent line at p makes four point contact with its branch.

Theorem 5.7. Let Γ∗ ⊂ CP 2 be an irreducible, real algebraic curve. In case the
circular points c± belong to Γ∗, assume c± are not undulation points. Suppose
a local arclength parameterization γ : (a, b) → ΓR extends meromorphically to
the complex plane. Then ΓR is a line, a circle, or a Bernoulli Lemniscate.

Proof. The hypothesis implies there exists a global Euclidean map γ : C→ Γ̃∗,
so Γ̃∗, Q must fit one of the cases of Proposition 5.4. If Γ∗ is not circular, it
has a unique ideal point p ∈ Γ̃∗. This is because Q has at least fourth order
poles at non-circular ideal points, and can only belong to case (1): dz and dw
are regular except for simple poles at the one ideal point p ∈ RP 2, isotropic
projection z : Γ̃∗ → C ∪ {∞} is unbranched, and n = deg(Γ∗) = 1. In other
words, Γ∗ is a line.

Thus, from now on, we assume Γ∗ is circular. In order to discuss the behavior
of dz and dw at c̃± ∈ Γ̃∗, it suffices to consider a local parameterization at
c+ = {0, 1, 0}:

α(t) =
∞∑

j=k

αjt
j , β(t) = 1 +

∞∑

j=1

βjt
j , η(t) =

∞∑

j=k

ηjt
j , k ≥ 1, ηk �= 0

Here we use the isotropic coordinates 3.2 (with λ = 1), and k ≥ 1 denotes the
smallest integer for which ηk �= 0. Note also that we have written αktk as the
first term of α(t) (though it may vanish); if a lower order term were non-zero,
z(t) = α(t)

η(t) would have a pole, and then Q would have fourth order poles at
both circular points, contradicting the proposition.

The tangent line is the isotropic line z = limt→0
α(t)
η(t) = αk

ηk
, i.e., ηkα−αkη = 0.

Substitution of α(t), η(t) into the latter equation gives: 0 = ηkα(t)−αkη(t) =∑∞
j=k(ηkαj−αkηj)tj . Here, the leading term drops out and, after re-indexing,

the equation may be expressed: 0 = tk+1
∑∞

i=0(ηkαi+k+1 − αkηi+k+1)tj .

For c+ to be non-undulational, k ≤ 2. In case k = 2, dz|c+ = η2α3−α2η3
η2
2

dt �= 0,
for the vanishing of the latter quantity would imply c+ is an undulation point.
Since w(t) has a second order pole at t = 0, Q = dzdw has a third order pole,
again contradicting the proposition. (This is the case of a cusp at c+.)

In case k = 1, Γ̃∗ is locally transverse to the ideal line; since this holds for
each branch, c+ is either a regular point of Γ∗ or an ordinary multiple point.
Then we may use t = η to parameterize Γ̃∗ locally, and write z(t) = t−1α(t) =
α1 + α2t + α3t

2 + · · · , w(t) = t−1β(t) = t−1 + β1 + β2t + · · ·. The inter-
section of Γ̃∗ with the tangent line α − α1η = 0 is computed by solving 0 =
α(t) − α1t = α2t

2 + α3t
3 + · · · Here, α2 and α3 cannot both vanish, since c+
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is non-undulational. It follows that Q has a pole at each branch of each cir-
cular point; further, to be consistent with the proposition, Γ∗ must be totally
circular.

Now the tangent line makes just two point contact with its branch (simple
tangency) when dz|c+ = α2dt �= 0 and Q has a second order pole (case (2)).
This is precisely the case where c+ is a regular point, the ideal line meets Γ∗

once at each circular point, and Γ∗ is a circular quadric, i.e., a circle.

It remains to consider the possibility of an inflection point at c+, where the
tangent line makes three point contact with its branch. This case, and only
this case, gives Q = d(α3t

2 + α4t
3 · · · )d(t−1 + β1 + · · · ) a simple pole at c+.

Because a simple pole occurs only in case (3), it is evident that Γ̃∗ has exactly
two branches at each circular point (thus accounting for the four simple poles
of Q), and that Γ∗ is a rational quartic with biflecnodes at c±. In fact, the
real singularity must also be a node (finite cusps being inconsistent with γ),
so Proposition 3.1 implies Γ̃∗ is a Bernoulli lemniscate. �
Theorem 1.1 now follows as a corollary. For an undulation point in a quartic
(no such point exists for n ≤ 3) must be a regular point p ∈ Γ∗

reg; otherwise the
tangent line at p would meet Γ∗ five times. Similarly, such an undulation point
cannot be a point of tangency to the ideal line. Nor can c± be undulation points
of Γ∗, because then c± would only account for two of four required meetings
with the ideal line and the other two meetings (distinct or not) would result
in P (Q) > 4. Thus, having ruled out circular undulation points, the theorem
applies.
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