Projections of Probability Distributions: A Measure-theoretic Dvoretzky Theorem

Elizabeth Meckes

Case Western Reserve University

October 12, 2012

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Marginals are normally Gaussian

Marginals are normally Gaussian

General phenomenon: if $X \in \mathbb{R}^d$ is a random vector and d is large, then (under some conditions on $\mathcal{L}(X)$), for a large measure of $\theta \in \mathbb{S}^{d-1}$, $\langle X, \theta \rangle$ is approximately Gaussian.

Marginals are normally Gaussian

General phenomenon: if $X \in \mathbb{R}^d$ is a random vector and d is large, then (under some conditions on $\mathcal{L}(X)$), for a large measure of $\theta \in \mathbb{S}^{d-1}$, $\langle X, \theta \rangle$ is approximately Gaussian.

< □ > < 同 > <

Figure from Buja, Cook, and Swayne "Interactive High-dimensional Data Visualization", 1996.

The previous page is a series of pictures of the "Diaconis-Freedman effect", well-known to statisticians.

Diaconis and Freedman (1984) proved that, under some conditions, if

 $\{x_1,\ldots,x_n\}\subseteq\mathbb{R}^d$

is a data set (i.e., deterministic vectors with no assumptions on the process which generated them), θ is a uniform random point in the sphere \mathbb{S}^{d-1} , and

$$\mu_{x}^{\theta} := \frac{1}{n} \sum_{i=1}^{n} \delta_{\langle x_{i}, \theta \rangle}$$

is the empirical measure of the projection of the x_i in the θ -direction, then as $n, d \to \infty$, the measures μ_x^{θ} tend to $\mathcal{N}(0, \sigma^2)$ weakly in probability.

Many other authors (Sudakov, von Weiszäcker, Klartag, Bobkov, Dümbgen,...) have observed and contributed to the understanding of this phenomenon.

▲□▶▲□▶▲□▶▲□▶ □ ● ○ ○ ○

Many other authors (Sudakov, von Weiszäcker, Klartag, Bobkov, Dümbgen,...) have observed and contributed to the understanding of this phenomenon. In particular:

Theorem (Bobkov)

Suppose that X satisfies $\mathbb{E}X_iX_j = \delta_{ij}$ and

$$\mathbb{P}\left[\left|\frac{|\boldsymbol{X}|}{\sqrt{d}}-\mathbf{1}\right|>\epsilon_{d}\right]\leq\epsilon_{d}.$$

Then

$$\sigma_{d-1}\left\{\theta \left| d_{\infty}\left(\left\langle \theta, X \right\rangle, Z\right) \geq 4\epsilon_{d} + \delta\right\} \leq 4d^{3/8}e^{-cd\delta^{4}}.$$

ション (中) (日) (日) (日) (日) (日)

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

A natural question: if $X \in \mathbb{R}^d$ is a random vector as before, are *k*-dimensional marginals close to Gaussian for fixed *k*?

A natural question: if $X \in \mathbb{R}^d$ is a random vector as before, are *k*-dimensional marginals close to Gaussian for fixed *k*?

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Presumably.

A natural question: if $X \in \mathbb{R}^d$ is a random vector as before, are *k*-dimensional marginals close to Gaussian for fixed *k*?

Presumably.

If so, how can k grow with d? Logarithmically? Polynomially?

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A natural question: if $X \in \mathbb{R}^d$ is a random vector as before, are *k*-dimensional marginals close to Gaussian for fixed *k*?

Presumably.

If so, how can k grow with d? Logarithmically? Polynomially?

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Answer: $k < \frac{2\log(d)}{\log(\log(d))}$.

<ロ> < @> < 注> < 注> < 注</p>

Theorem (E.M.) Let X be a random vector in \mathbb{R}^d satisfying

Theorem (E.M.)

Let *X* be a random vector in \mathbb{R}^d satisfying

• $\mathbb{E}X = 0$, $\mathbb{E}|X|^2 = \sigma^2 d$, and $\sup_{\xi \in \mathbb{S}^{d-1}} \mathbb{E} \langle \xi, X \rangle^2 \le L'$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem (E.M.)

Let X be a random vector in \mathbb{R}^d satisfying

• $\mathbb{E}X = 0$, $\mathbb{E}|X|^2 = \sigma^2 d$, and $\sup_{\xi \in \mathbb{S}^{d-1}} \mathbb{E} \langle \xi, X \rangle^2 \leq L'$

ション (中) (日) (日) (日) (日) (日)

•
$$\mathbb{E}\left||X|^2\sigma^{-2}-d\right|\leq L\sqrt{d}.$$

Theorem (E.M.)

Let X be a random vector in \mathbb{R}^d satisfying

• $\mathbb{E}X = 0$, $\mathbb{E}|X|^2 = \sigma^2 d$, and $\sup_{\xi \in \mathbb{S}^{d-1}} \mathbb{E} \langle \xi, X \rangle^2 \leq L'$

$$\blacktriangleright \mathbb{E} \left| |X|^2 \sigma^{-2} - d \right| \leq L \sqrt{d}.$$

For θ in the Stiefel manifold $\mathfrak{W}_{d,k}$, let X_{θ} denote the projection of X onto the span of θ .

ション (中) (日) (日) (日) (日) (日)

Theorem (E.M.)

Let X be a random vector in \mathbb{R}^d satisfying

• $\mathbb{E}X = 0$, $\mathbb{E}|X|^2 = \sigma^2 d$, and $\sup_{\xi \in \mathbb{S}^{d-1}} \mathbb{E} \langle \xi, X \rangle^2 \leq L'$

$$\blacktriangleright \mathbb{E} \left| |X|^2 \sigma^{-2} - d \right| \leq L \sqrt{d}.$$

For θ in the Stiefel manifold $\mathfrak{W}_{d,k}$, let X_{θ} denote the projection of X onto the span of θ . Fix $\delta \in (0, 2)$, and let $\mathbf{k} = \delta \frac{\log(d)}{\log(\log(d))}$.

Theorem (E.M.)

Let X be a random vector in \mathbb{R}^d satisfying

• $\mathbb{E}X = 0$, $\mathbb{E}|X|^2 = \sigma^2 d$, and $\sup_{\xi \in \mathbb{S}^{d-1}} \mathbb{E} \langle \xi, X \rangle^2 \leq L'$

$$\blacktriangleright \mathbb{E} \left| |X|^2 \sigma^{-2} - d \right| \leq L \sqrt{d}.$$

For θ in the Stiefel manifold $\mathfrak{W}_{d,k}$, let X_{θ} denote the projection of X onto the span of θ . Fix $\delta \in (0, 2)$, and let $k = \delta \frac{\log(d)}{\log(\log(d))}$. Then there is a c > 0 depending only on δ , L and L' such that for $\epsilon = \frac{2}{[\log(d)]^c}$, there is a subset $\mathfrak{T} \subseteq \mathfrak{W}_{d,k}$ with $\mathbb{P}_{d,k}[\mathfrak{T}^c] \leq Ce^{-c'd\epsilon^2}$, such that for all $\theta \in \mathfrak{T}$,

 $d_{BL}(X_{\theta}, \sigma Z) \leq C' \epsilon.$

A D M A

・ロト・日本・モー・モー うへの

Let *X* be uniform among $S := \{\pm \sqrt{d}e_1, \ldots, \pm \sqrt{d}e_d\} \subseteq \mathbb{R}^d$.

Let *X* be uniform among $S := \{\pm \sqrt{d}e_1, \dots, \pm \sqrt{d}e_d\} \subseteq \mathbb{R}^d$. Let c > 2 and let *E* be a subspace of \mathbb{R}^d with $dim(E) = c \frac{\log(d)}{\log(\log(d))}$.

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Let *X* be uniform among $S := \{\pm \sqrt{d}e_1, \dots, \pm \sqrt{d}e_d\} \subseteq \mathbb{R}^d$. Let c > 2 and let *E* be a subspace of \mathbb{R}^d with $dim(E) = c \frac{\log(d)}{\log(\log(d))}$. Define $f : E \to \mathbb{R}$ by $f(x) := (1 - d(x, \pi_E(S)))_+$.

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let *X* be uniform among $S := \{\pm \sqrt{d}e_1, \ldots, \pm \sqrt{d}e_d\} \subseteq \mathbb{R}^d$. Let c > 2 and let *E* be a subspace of \mathbb{R}^d with $dim(E) = c \frac{\log(d)}{\log(\log(d))}$. Define $f : E \to \mathbb{R}$ by $f(x) := (1 - d(x, \pi_E(S)))_+$. Then $\|f\|_{BL} \leq 1$ and

 $\int f d\mu_{\pi_E(S)} = 1$

but

$$\int f d\gamma_E \xrightarrow{d \to \infty} 0.$$

That is, for this choice of k, $d_{BL}(X_{\theta}, \sigma Z) \approx 1$ for all choices of $\theta \in \mathfrak{W}_{d,k}$.

The example shows that $k_c = \frac{2 \log(d)}{\log(\log(d))}$ is a sharp cut-off such that if *X* is a random vector in \mathbb{R}^d satisfying some natural conditions on $\mathcal{L}(X)$, then most *k*-dimensional margins of *X* are approximately Gaussian for $k < k_c$ and this need not be true for $k > k_c$.

<ロ> < 団> < 団> < 団> < 豆> < 豆> < 豆</p>

Let $\|\cdot\|$ be any norm on \mathbb{R}^d such that the maximum volume ellipsoid in its unit ball is a dilate of the sphere. Let $\epsilon > 0$ be fixed.

Let $\|\cdot\|$ be any norm on \mathbb{R}^d such that the maximum volume ellipsoid in its unit ball is a dilate of the sphere. Let $\epsilon > 0$ be fixed. Then there is some rescaling of $\|\cdot\|$ and a constant $C(\epsilon)$ (depending only on ϵ !) such that if

 $k \leq C(\epsilon) \log(d)$

and if *E* is a random subspace of \mathbb{R}^d of dimension *k*, then with probability tending to 1,

 $|\mathbf{v}| \le \|\mathbf{v}\| \le (1+\epsilon)|\mathbf{v}|$

ション (中) (日) (日) (日) (日) (日)

for all $v \in E$.

Let $\|\cdot\|$ be any norm on \mathbb{R}^d such that the maximum volume ellipsoid in its unit ball is a dilate of the sphere. Let $\epsilon > 0$ be fixed. Then there is some rescaling of $\|\cdot\|$ and a constant $C(\epsilon)$ (depending only on ϵ !) such that if

 $k \leq C(\epsilon) \log(d)$

and if *E* is a random subspace of \mathbb{R}^d of dimension *k*, then with probability tending to 1,

 $|\boldsymbol{v}| \leq \|\boldsymbol{v}\| \leq (1+\epsilon)|\boldsymbol{v}|$

for all $v \in E$.

That is, if $k \leq C(\epsilon) \log(d)$, then most *k*-dimensional subspaces of the normed space $(\mathbb{R}^d, \|\cdot\|)$ look very similar to *k*-dimensional Euclidean space $(\mathbb{R}^k, |\cdot|)$.

► In both theorems, an additional structure is imposed on ℝⁿ (a norm in the case of Dvoretzky's theorem; a probability measure in our context);

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

- In both theorems, an additional structure is imposed on Rⁿ (a norm in the case of Dvoretzky's theorem; a probability measure in our context);
- in either case, there is a particularly nice way to do this (the Euclidean norm and the Gaussian distribution, respectively).

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- In both theorems, an additional structure is imposed on ℝⁿ (a norm in the case of Dvoretzky's theorem; a probability measure in our context);
- in either case, there is a particularly nice way to do this (the Euclidean norm and the Gaussian distribution, respectively).
- If you reduce the dimension sufficiently, what typically happens is that all of the original structure is lost and all you see is this canonical nice (or boring) space.

・ロト・4回ト・4回ト・4回ト・4日ト

Dvoretzky dimension

Dvoretzky dimension

Under extra assumptions on the norm $\|\cdot\|$, it may be that *k* can be larger as a function of *d*. In particular:

Dvoretzky dimension

Under extra assumptions on the norm $\|\cdot\|$, it may be that *k* can be larger as a function of *d*. In particular:

► Figiel, Lindenstrauss and V. Milman showed that if a *d*-dimensional Banach space X has cotype q ∈ [2,∞), then X has subspaces of dimension of the order d^{2/q} which are approximately Euclidean.

ション (中) (日) (日) (日) (日) (日)

Dvoretzky dimension

Under extra assumptions on the norm $\|\cdot\|$, it may be that *k* can be larger as a function of *d*. In particular:

- ► Figiel, Lindenstrauss and V. Milman showed that if a *d*-dimensional Banach space X has cotype q ∈ [2,∞), then X has subspaces of dimension of the order d^{2/q} which are approximately Euclidean.
- Szarek showed that if X has bounded volume ratio, then X has nearly Euclidean subspaces of dimension ^d/₂.

ション (中) (日) (日) (日) (日) (日)

Dvoretzky dimension

Under extra assumptions on the norm $\|\cdot\|$, it may be that *k* can be larger as a function of *d*. In particular:

- ► Figiel, Lindenstrauss and V. Milman showed that if a *d*-dimensional Banach space X has cotype q ∈ [2,∞), then X has subspaces of dimension of the order d^{2/q} which are approximately Euclidean.
- Szarek showed that if X has bounded volume ratio, then X has nearly Euclidean subspaces of dimension ^d/₂.

This is analogous to the difference between the main theorem and a result of Klartag, showing that if the random vector X has a log-concave distribution, then most projections are close to Gaussian for $k = d^{\epsilon}$ for a specific value of ϵ .

▲□▶▲圖▶▲≣▶▲≣▶ … 更 … 釣�?

The mean projection X_Θ = ⟨X, Θ⟩, when both X and Θ are random and independent, is approximately Gaussian. This is shown using Stein's method.

- The mean projection X_Θ = ⟨X, Θ⟩, when both X and Θ are random and independent, is approximately Gaussian. This is shown using Stein's method.
- ► The mean bounded-Lipschitz distance E_θ d_{BL}(X_θ, X_Θ) is small.

The bounded-Lipschitz distance is interpreted as the supremum of a stochastic process indexed by test functions. Concentration of measure on the Stiefel manifold implies that this process has subgaussian increments, allowing the expected supremum to be estimated via entropy methods.

- The mean projection X_Θ = ⟨X, Θ⟩, when both X and Θ are random and independent, is approximately Gaussian. This is shown using Stein's method.
- ► The mean bounded-Lipschitz distance E_θ d_{BL}(X_θ, X_Θ) is small.

The bounded-Lipschitz distance is interpreted as the supremum of a stochastic process indexed by test functions. Concentration of measure on the Stiefel manifold implies that this process has subgaussian increments, allowing the expected supremum to be estimated via entropy methods.

► The bounded-Lipschitz distance d_{BL}(X_θ, X_Θ) is tightly concentrated near its mean. This also follows from concentration of measure on the Stiefel manifold.

Exchangeable pairs with infinitesimal symmetries:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆

Exchangeable pairs with infinitesimal symmetries: If $W \in \mathbb{R}^k$ is a random vector, and a family $(W, W_{\epsilon})_{\epsilon>0}$ of exchangeable pairs can be constructed so that, for some deterministic $\lambda(\epsilon)$,

Exchangeable pairs with infinitesimal symmetries: If $W \in \mathbb{R}^k$ is a random vector, and a family $(W, W_{\epsilon})_{\epsilon>0}$ of exchangeable pairs can be constructed so that, for some deterministic $\lambda(\epsilon)$,

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

•
$$\mathbb{E}[W_{\epsilon} - W|W] \approx -\lambda(\epsilon)W$$

$$\blacktriangleright \mathbb{E}[(W_{\epsilon} - W)(W_{\epsilon} - W)^{T}|W] \approx 2\lambda(\epsilon)\sigma^{2}I_{k \times k}$$

•
$$\mathbb{E}|W_{\epsilon} - W|^3 \ll \lambda(\epsilon)$$

Exchangeable pairs with infinitesimal symmetries: If $W \in \mathbb{R}^k$ is a random vector, and a family $(W, W_{\epsilon})_{\epsilon>0}$ of exchangeable pairs can be constructed so that, for some deterministic $\lambda(\epsilon)$,

•
$$\mathbb{E}[W_{\epsilon} - W | W] \approx -\lambda(\epsilon)W$$

$$\blacktriangleright \mathbb{E}[(W_{\epsilon} - W)(W_{\epsilon} - W)^{T}|W] \approx 2\lambda(\epsilon)\sigma^{2}I_{k \times k}$$

•
$$\mathbb{E}|W_{\epsilon} - W|^3 \ll \lambda(\epsilon)$$

Then $W \approx \sigma Z$, where Z is a standard Gaussian random vector.

ション (中) (日) (日) (日) (日) (日)

Exchangeable pairs with infinitesimal symmetries: If $W \in \mathbb{R}^k$ is a random vector, and a family $(W, W_{\epsilon})_{\epsilon>0}$ of exchangeable pairs can be constructed so that, for some deterministic $\lambda(\epsilon)$,

$$\blacktriangleright \mathbb{E}[W_{\epsilon} - W | W] \approx -\lambda(\epsilon)W$$

$$\blacktriangleright \mathbb{E}[(W_{\epsilon} - W)(W_{\epsilon} - W)^{T}|W] \approx 2\lambda(\epsilon)\sigma^{2}I_{k \times k}$$

•
$$\mathbb{E}|W_{\epsilon} - W|^3 \ll \lambda(\epsilon)$$

Then $W \approx \sigma Z$, where Z is a standard Gaussian random vector.

ション (中) (日) (日) (日) (日) (日)

Here, we take $W = \langle X, \Theta \rangle$, where $\Theta \in \mathfrak{W}_{d,k}$ is uniform and independent of *X*.

・ロト・西ト・ヨト ヨー うへの

To construct W_{ϵ} , rotate Θ by ϵ in a random direction:

To construct W_{ϵ} , rotate Θ by ϵ in a random direction: if

 $\Theta = (\Theta_1, \ldots, \Theta_k),$

then

 $\Theta_{\epsilon} = \left([UR_{1,2}(\epsilon)U^{T}]\Theta_{1}, \dots, [UR_{1,2}(\epsilon)U^{T}]\Theta_{k} \right),$

where *U* is an independently chosen random orthogonal matrix and $R_{1,2}(\epsilon)$ rotates by ϵ in the span of the first two basis elements.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

To construct W_{ϵ} , rotate Θ by ϵ in a random direction: if

 $\Theta = (\Theta_1, \ldots, \Theta_k),$

then

 $\Theta_{\epsilon} = \left([UR_{1,2}(\epsilon)U^{T}]\Theta_{1}, \dots, [UR_{1,2}(\epsilon)U^{T}]\Theta_{k} \right),$

where *U* is an independently chosen random orthogonal matrix and $R_{1,2}(\epsilon)$ rotates by ϵ in the span of the first two basis elements.

The theorem on the last slide can be applied, and the result is that

$$d_{BL}(X_{\Theta}, \sigma Z) \leq rac{C\sigma\sqrt{k}}{\sqrt{d}}$$

・ロト・日本・ヨト・ヨー うへの

Define the metric ρ on $\mathfrak{W}_{d,k}$ by

$$\rho(\theta, \theta') = \sqrt{\sum_{i=1}^{k} |\theta_i - \theta'_i|^2}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Define the metric ρ on $\mathfrak{W}_{d,k}$ by

$$\rho(\theta, \theta') = \sqrt{\sum_{i=1}^{k} |\theta_i - \theta'_i|^2}.$$

There are constants *C*, *c* (independent of *d*, *k*) such that if $F : \mathfrak{M}_{d,k} \to \mathbb{R}$ is Lipschitz with Lipschitz constant *L*,

$$\mathbb{P}\Big[ig| m{F}(\Theta) - \mathbb{E}m{F}(\Theta)ig| > L\epsilon\Big] \leq m{C}m{e}^{-m{c}m{d}\epsilon^2}$$

Define the metric ρ on $\mathfrak{W}_{d,k}$ by

$$\rho(\theta, \theta') = \sqrt{\sum_{i=1}^{k} |\theta_i - \theta'_i|^2}.$$

There are constants *C*, *c* (independent of *d*, *k*) such that if $F : \mathfrak{W}_{d,k} \to \mathbb{R}$ is Lipschitz with Lipschitz constant *L*,

$$\mathbb{P}\Big[ig| m{\mathcal{F}}(\Theta) - \mathbb{E}m{\mathcal{F}}(\Theta)ig| > L\epsilon\Big] \leq m{C}m{e}^{-m{c}m{d}\epsilon^2}$$

It's straightforward to show that $F(\theta) := d_{BL}(X_{\theta}, \sigma Z)$ is Lipschitz with constant $\sqrt{L'}$; this is the whole content of step 3.

◆□ > ◆□ > ◆ □ > ◆ □ > → □ = → のへで

We need to estimate

$$\mathbb{E}_{\theta} d_{BL}(X_{\theta}, X_{\Theta}) = \mathbb{E} \left(\sup_{\|f\|_{BL} \leq 1} \left| \mathbb{E} \left[f(X_{\theta}) \middle| \theta \right] - \mathbb{E} f(X_{\Theta}) \right| \right).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

We need to estimate

$$\mathbb{E}_{\theta} d_{BL}(X_{\theta}, X_{\Theta}) = \mathbb{E} \left(\sup_{\|f\|_{BL} \leq 1} \left| \mathbb{E} \left[f(X_{\theta}) \middle| \theta \right] - \mathbb{E} f(X_{\Theta}) \right| \right).$$

If the stochastic process $\{X_f\}_{\|f\|_{BL} \leq 1}$ is defined by

$$X_f := \mathbb{E}\left[f(X_{\theta})|\theta\right] - \mathbb{E}f(X_{\Theta}),$$

then what we want is $\mathbb{E} \sup_{\|f\|_{BL} \leq 1} X_f$.

We need to estimate

$$\mathbb{E}_{\theta} d_{BL}(X_{\theta}, X_{\Theta}) = \mathbb{E} \left(\sup_{\|f\|_{BL} \leq 1} \left| \mathbb{E} \left[f(X_{\theta}) \middle| \theta \right] - \mathbb{E} f(X_{\Theta}) \right| \right).$$

If the stochastic process $\{X_f\}_{\|f\|_{BL} \leq 1}$ is defined by

 $X_f := \mathbb{E}\left[f(X_{\theta})|\theta\right] - \mathbb{E}f(X_{\Theta}),$

then what we want is $\mathbb{E} \sup_{\|f\|_{BL} \leq 1} X_f$.

Applying measure concentration to $F(\theta) := \mathbb{E}\left[(f - g)(X_{\theta})|\theta\right]$ shows that the process has the property:

$$\mathbb{P}\Big[\big|X_f - X_g\big| > \epsilon\Big] \le Ce^{-\frac{cd\epsilon^2}{\|f-g\|_{BL}^2}}$$

Theorem (Dudley)

If a stochastic process $\{X_t\}_{t \in T}$ satisfies the a sub-Gaussian increment condition

$$\mathbb{P}\left[\left|X_{t}-X_{s}\right| > \epsilon\right] \leq C e^{-\frac{\epsilon^{2}}{2\delta^{2}(s,t)}} \qquad \forall \epsilon > 0,$$

then

$$\mathbb{E} \sup_{t \in \mathcal{T}} X_t \leq C \int_0^\infty \sqrt{\log N(\mathcal{T}, \delta, \epsilon)} d\epsilon,$$

where $N(T, \delta, \epsilon)$ is the ϵ -covering number of T with respect to the distance δ .

ション ふゆ アメリア メリア しょうめん

Theorem (Dudley)

If a stochastic process $\{X_t\}_{t \in T}$ satisfies the a sub-Gaussian increment condition

$$\mathbb{P}\left[\left|X_{t}-X_{s}\right| > \epsilon\right] \leq C e^{-\frac{\epsilon^{2}}{2\delta^{2}(s,t)}} \qquad \forall \epsilon > 0,$$

then

$$\mathbb{E} \sup_{t \in \mathcal{T}} X_t \leq C \int_0^\infty \sqrt{\log N(\mathcal{T}, \delta, \epsilon)} d\epsilon,$$

where $N(T, \delta, \epsilon)$ is the ϵ -covering number of T with respect to the distance δ .

Recall that our process satisfies

$$\mathbb{P}\Big[\big|X_f - X_g\big| > \epsilon\Big] \le Ce^{-\frac{cd\epsilon^2}{\|f-g\|_{BL}^2}}$$

<ロト < 理ト < ヨト < ヨト = ヨ = のへの

The question, then, is: if $BL_1^k := \left\{ f : \mathbb{R}^k \to \mathbb{R} \middle| \|f\|_{BL} \le 1 \right\}$, what is $N\left(BL_1^k, \frac{\|\cdot\|_{BL}}{\sqrt{d}}, \epsilon\right)$?

The question, then, is: if $BL_1^k := \left\{ f : \mathbb{R}^k \to \mathbb{R} \middle| \|f\|_{BL} \le 1 \right\}$, what is $N\left(BL_1^k, \frac{\|\cdot\|_{BL}}{\sqrt{d}}, \epsilon\right)$?

Bad news: $N\left(BL_{1}^{k}, \frac{\|\cdot\|_{BL}}{\sqrt{d}}, \epsilon\right) = \infty.$

The question, then, is: if $BL_1^k := \left\{ f : \mathbb{R}^k \to \mathbb{R} \Big| \|f\|_{BL} \leq 1 \right\}$, what is $N\left(BL_1^k, \frac{\|\cdot\|_{BL}}{\sqrt{d}}, \epsilon\right)$?

Bad news: $N\left(BL_{1}^{k}, \frac{\|\cdot\|_{BL}}{\sqrt{d}}, \epsilon\right) = \infty.$

But not to worry: approximating Lipschitz functions by piecewise affine functions and using volumetric estimates in the resulting finite-dimensional normed space of approximating functions does the job, and ultimately we get (with the simplification B = 1)

$$\mathbb{E}_{\theta} d_{BL}(X_{\theta}, X_{\Theta}) \leq C \frac{k + \log(d)}{k^{\frac{2}{3}} d^{\frac{2}{3k+4}}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

So:

So:

• $d_{BL}(X_{\Theta}, \sigma Z) \leq \frac{C\sigma\sqrt{k}}{\sqrt{d}}$

•
$$d_{BL}(X_{\Theta}, \sigma Z) \leq \frac{C\sigma\sqrt{k}}{\sqrt{d}}$$

• $\mathbb{P}\left[\theta: \left|d_{BL}(X_{\theta}, X_{\Theta}) - \mathbb{E}d_{BL}(X_{\theta}, X_{\Theta})\right| > \epsilon\right] \leq Ce^{-cd\epsilon^2}.$

So:

•
$$d_{BL}(X_{\Theta}, \sigma Z) \leq \frac{C\sigma\sqrt{k}}{\sqrt{d}}$$

• $\mathbb{P}\left[\theta : \left|d_{BL}(X_{\theta}, X_{\Theta}) - \mathbb{E}d_{BL}(X_{\theta}, X_{\Theta})\right| > \epsilon\right] \leq Ce^{-cd\epsilon^{2}}.$
• $\mathbb{E}_{\theta}d_{BL}(X_{\theta}, X_{\Theta}) \leq C\frac{k + \log(d)}{k^{\frac{2}{3}}d^{\frac{2}{3k+4}}}.$

So:

•
$$d_{BL}(X_{\Theta}, \sigma Z) \leq \frac{C\sigma\sqrt{k}}{\sqrt{d}}$$

• $\mathbb{P}\left[\theta : \left|d_{BL}(X_{\theta}, X_{\Theta}) - \mathbb{E}d_{BL}(X_{\theta}, X_{\Theta})\right| > \epsilon\right] \leq Ce^{-cd\epsilon^{2}}.$
• $\mathbb{E}_{\theta}d_{BL}(X_{\theta}, X_{\Theta}) \leq C\frac{k+\log(d)}{k^{\frac{2}{3}}d^{\frac{2}{3k+4}}}.$

Choosing $k = \frac{\delta \log(d)}{\log(\log(d))}$ and $\epsilon = \frac{2}{\log(d)^c}$ (for a particular *c* which depends on δ) finishes the proof.

▲□▶▲□▶▲□▶▲□▶ = ● のへで

The heavy-hitters

Charles Stein

Mikhail Gromov Vitali Milman

Richard Dudley Gilles Pisier

Aryeh Dvoretzky Vitali Milman

Thank you.

(ロト (個) (E) (E) (E) (O)