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Marginals are normally Gaussian

General phenomenon: if X ∈ Rd is a random vector and d is
large, then (under some conditions on L(X )), for a large
measure of θ ∈ Sd−1, 〈X , θ〉 is approximately Gaussian.

Figure from Buja, Cook, and Swayne “Interactive High-dimensional Data Visualization”, 1996.
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The previous page is a series of pictures of the
“Diaconis-Freedman effect”, well-known to statisticians.

Diaconis and Freedman (1984) proved that, under some
conditions, if {

x1, . . . , xn
}
⊆ Rd

is a data set (i.e., deterministic vectors with no assumptions on
the process which generated them), θ is a uniform random
point in the sphere Sd−1, and

µθx :=
1
n

n∑
i=1

δ〈xi ,θ〉

is the empirical measure of the projection of the xi in the
θ-direction, then as n,d →∞, the measures µθx tend to
N (0, σ2) weakly in probability.



Many other authors (Sudakov, von Weiszäcker, Klartag,
Bobkov, Dümbgen,...) have observed and contributed to the
understanding of this phenomenon.

In particular:

Theorem (Bobkov)
Suppose that X satisfies EXiXj = δij and

P
[∣∣∣∣ |X |√d

− 1
∣∣∣∣ > εd

]
≤ εd .

Then

σd−1

{
θ
∣∣∣d∞ (〈θ,X 〉 ,Z ) ≥ 4εd + δ

}
≤ 4d3/8e−cdδ4

.
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Higher-dimensional marginals

A natural question: if X ∈ Rd is a random vector as before, are
k -dimensional marginals close to Gaussian for fixed k?

Presumably.

If so, how can k grow with d? Logarithmically? Polynomially?

Answer: k < 2 log(d)
log(log(d)) .



Higher-dimensional marginals

A natural question: if X ∈ Rd is a random vector as before, are
k -dimensional marginals close to Gaussian for fixed k?

Presumably.

If so, how can k grow with d? Logarithmically? Polynomially?

Answer: k < 2 log(d)
log(log(d)) .



Higher-dimensional marginals

A natural question: if X ∈ Rd is a random vector as before, are
k -dimensional marginals close to Gaussian for fixed k?

Presumably.

If so, how can k grow with d? Logarithmically? Polynomially?

Answer: k < 2 log(d)
log(log(d)) .



Higher-dimensional marginals

A natural question: if X ∈ Rd is a random vector as before, are
k -dimensional marginals close to Gaussian for fixed k?

Presumably.

If so, how can k grow with d? Logarithmically? Polynomially?

Answer: k < 2 log(d)
log(log(d)) .



Higher-dimensional marginals

A natural question: if X ∈ Rd is a random vector as before, are
k -dimensional marginals close to Gaussian for fixed k?

Presumably.

If so, how can k grow with d? Logarithmically? Polynomially?

Answer: k < 2 log(d)
log(log(d)) .



Main result

Theorem (E.M.)
Let X be a random vector in Rd satisfying

I EX = 0, E|X |2 = σ2d, and supξ∈Sd−1 E 〈ξ,X 〉2 ≤ L′

I E
∣∣∣|X |2σ−2 − d

∣∣∣ ≤ L
√

d .

For θ in the Stiefel manifold Wd ,k , let Xθ denote the projection
of X onto the span of θ. Fix δ ∈ (0,2), and let k = δ log(d)

log(log(d)) .
Then there is a c > 0 depending only on δ, L and L′ such that
for ε = 2

[log(d)]c , there is a subset T ⊆Wd ,k with

Pd ,k [Tc] ≤ Ce−c′dε2 , such that for all θ ∈ T,

dBL(Xθ, σZ ) ≤ C′ε.
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Sharpness

Let X be uniform among S := {±
√

de1, . . . ,±
√

ded} ⊆ Rd .
Let c > 2 and let E be a subspace of Rd with
dim(E) = c log(d)

log(log(d)) .

Define f : E → R by f (x) := (1− d(x , πE (S)))+. Then
‖f‖BL ≤ 1 and ∫

fdµπE (S) = 1

but ∫
fdγE

d→∞−−−→ 0.

That is, for this choice of k , dBL(Xθ, σZ ) ≈ 1 for all choices of
θ ∈Wd ,k .
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The example shows that kc = 2 log(d)
log(log(d)) is a sharp cut-off such

that if X is a random vector in Rd satisfying some natural
conditions on L(X ), then most k -dimensional margins of X are
approximately Gaussian for k < kc and this need not be true for
k > kc .



Dvoretzky’s Theorem

Let ‖ · ‖ be any norm on Rd such that the maximum volume
ellipsoid in its unit ball is a dilate of the sphere. Let ε > 0 be
fixed. Then there is some rescaling of ‖ · ‖ and a constant C(ε)
(depending only on ε!) such that if

k ≤ C(ε) log(d)

and if E is a random subspace of Rd of dimension k , then with
probability tending to 1,

|v | ≤ ‖v‖ ≤ (1 + ε)|v |

for all v ∈ E .

That is, if k ≤ C(ε) log(d), then most k -dimensional subspaces
of the normed space (Rd , ‖ · ‖) look very similar to
k -dimensional Euclidean space (Rk , | · |).



Dvoretzky’s Theorem

Let ‖ · ‖ be any norm on Rd such that the maximum volume
ellipsoid in its unit ball is a dilate of the sphere. Let ε > 0 be
fixed.

Then there is some rescaling of ‖ · ‖ and a constant C(ε)
(depending only on ε!) such that if

k ≤ C(ε) log(d)

and if E is a random subspace of Rd of dimension k , then with
probability tending to 1,

|v | ≤ ‖v‖ ≤ (1 + ε)|v |

for all v ∈ E .

That is, if k ≤ C(ε) log(d), then most k -dimensional subspaces
of the normed space (Rd , ‖ · ‖) look very similar to
k -dimensional Euclidean space (Rk , | · |).



Dvoretzky’s Theorem

Let ‖ · ‖ be any norm on Rd such that the maximum volume
ellipsoid in its unit ball is a dilate of the sphere. Let ε > 0 be
fixed. Then there is some rescaling of ‖ · ‖ and a constant C(ε)
(depending only on ε!) such that if

k ≤ C(ε) log(d)

and if E is a random subspace of Rd of dimension k , then with
probability tending to 1,

|v | ≤ ‖v‖ ≤ (1 + ε)|v |

for all v ∈ E .

That is, if k ≤ C(ε) log(d), then most k -dimensional subspaces
of the normed space (Rd , ‖ · ‖) look very similar to
k -dimensional Euclidean space (Rk , | · |).



Dvoretzky’s Theorem

Let ‖ · ‖ be any norm on Rd such that the maximum volume
ellipsoid in its unit ball is a dilate of the sphere. Let ε > 0 be
fixed. Then there is some rescaling of ‖ · ‖ and a constant C(ε)
(depending only on ε!) such that if

k ≤ C(ε) log(d)

and if E is a random subspace of Rd of dimension k , then with
probability tending to 1,

|v | ≤ ‖v‖ ≤ (1 + ε)|v |

for all v ∈ E .

That is, if k ≤ C(ε) log(d), then most k -dimensional subspaces
of the normed space (Rd , ‖ · ‖) look very similar to
k -dimensional Euclidean space (Rk , | · |).



The analogy

I In both theorems, an additional structure is imposed on Rn

(a norm in the case of Dvoretzky’s theorem; a probability
measure in our context);

I in either case, there is a particularly nice way to do this
(the Euclidean norm and the Gaussian distribution,
respectively).

I If you reduce the dimension sufficiently, what typically
happens is that all of the original structure is lost and all
you see is this canonical nice (or boring) space.
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Dvoretzky dimension

Under extra assumptions on the norm ‖ · ‖, it may be that k can
be larger as a function of d . In particular:

I Figiel, Lindenstrauss and V. Milman showed that if a
d-dimensional Banach space X has cotype q ∈ [2,∞),
then X has subspaces of dimension of the order d

2
q which

are approximately Euclidean.
I Szarek showed that if X has bounded volume ratio, then X

has nearly Euclidean subspaces of dimension d
2 .

This is analogous to the difference between the main theorem
and a result of Klartag, showing that if the random vector X has
a log-concave distribution, then most projections are close to
Gaussian for k = d ε for a specific value of ε.
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Outline of the proof of the main theorem

I The mean projection XΘ = 〈X ,Θ〉, when both X and Θ are
random and independent, is approximately Gaussian.
This is shown using Stein’s method.

I The mean bounded-Lipschitz distance EθdBL(Xθ,XΘ) is
small.
The bounded-Lipschitz distance is interpreted as the
supremum of a stochastic process indexed by test
functions. Concentration of measure on the Stiefel
manifold implies that this process has subgaussian
increments, allowing the expected supremum to be
estimated via entropy methods.

I The bounded-Lipschitz distance dBL(Xθ,XΘ) is tightly
concentrated near its mean.
This also follows from concentration of measure on the
Stiefel manifold.
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More about step 1

Exchangeable pairs with infinitesimal symmetries:

If W ∈ Rk is
a random vector, and a family (W ,Wε)ε>0 of exchangeable
pairs can be constructed so that, for some deterministic λ(ε),

I E[Wε −W |W ] ≈ −λ(ε)W
I E[(Wε −W )(Wε −W )T |W ] ≈ 2λ(ε)σ2Ik×k

I E|Wε −W |3 � λ(ε)

Then W ≈ σZ , where Z is a standard Gaussian random vector.

Here, we take W = 〈X ,Θ〉, where Θ ∈Wd ,k is uniform and
independent of X .
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W = 〈X ,Θ〉 is approximately Gaussian:

To construct Wε, rotate Θ by ε in a random direction: if

Θ = (Θ1, . . . ,Θk ),

then
Θε =

(
[UR1,2(ε)UT ]Θ1, . . . , [UR1,2(ε)UT ]Θk

)
,

where U is an independently chosen random orthogonal matrix
and R1,2(ε) rotates by ε in the span of the first two basis
elements.
The theorem on the last slide can be applied, and the result is
that

dBL(XΘ, σZ ) ≤ Cσ
√

k√
d

.
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Concentration of measure

Define the metric ρ on Wd ,k by

ρ(θ, θ′) =

√√√√ k∑
i=1

|θi − θ′i |2.

There are constants C, c (independent of d , k ) such that if
F : Wd ,k → R is Lipschitz with Lipschitz constant L,

P
[∣∣F (Θ)− EF (Θ)

∣∣ > Lε
]
≤ Ce−cdε2 .

It’s straightforward to show that F (θ) := dBL(Xθ, σZ ) is Lipschitz
with constant

√
L′; this is the whole content of step 3.
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Step 2 – Average distance to average

We need to estimate

EθdBL(Xθ,XΘ) = E

(
sup
‖f‖BL≤1

∣∣∣E [f (Xθ)
∣∣θ]− Ef (XΘ)

∣∣∣).
If the stochastic process {Xf}‖f‖BL≤1 is defined by

Xf := E
[
f (Xθ)

∣∣θ]− Ef (XΘ),

then what we want is E sup‖f‖BL≤1 Xf .

Applying measure concentration to F (θ) := E
[
(f − g)(Xθ)

∣∣θ]
shows that the process has the property:

P
[∣∣Xf − Xg

∣∣ > ε
]
≤ Ce

− cdε2

‖f−g‖2BL .
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Theorem (Dudley)
If a stochastic process {Xt}t∈T satisfies the a sub-Gaussian
increment condition

P
[∣∣Xt − Xs

∣∣ > ε
]
≤ Ce

− ε2

2δ2(s,t) ∀ε > 0,

then
E sup

t∈T
Xt ≤ C

∫ ∞
0

√
log N(T , δ, ε)dε,

where N(T , δ, ε) is the ε-covering number of T with respect to
the distance δ.

Recall that our process satisfies

P
[∣∣Xf − Xg

∣∣ > ε
]
≤ Ce

− cdε2

‖f−g‖2BL .
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The question, then, is: if BLk
1 :=

{
f : Rk → R

∣∣∣‖f‖BL ≤ 1
}
, what

is N
(

BLk
1,
‖·‖BL√

d
, ε
)

?

Bad news: N
(

BLk
1,
‖·‖BL√

d
, ε
)

=∞.

But not to worry: approximating Lipschitz functions by
piecewise affine functions and using volumetric estimates in the
resulting finite-dimensional normed space of approximating
functions does the job, and ultimately we get (with the
simplification B = 1)

EθdBL(Xθ,XΘ) ≤ C
k + log(d)

k
2
3 d

2
3k+4

.
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So:

I dBL(XΘ, σZ ) ≤ Cσ
√

k√
d

I P
[
θ :
∣∣∣dBL(Xθ,XΘ)− EdBL(Xθ,XΘ)

∣∣∣ > ε
]
≤ Ce−cdε2 .

I EθdBL(Xθ,XΘ) ≤ C k+log(d)

k
2
3 d

2
3k+4

.

Choosing k = δ log(d)
log(log(d)) and ε = 2

log(d)c (for a particular c which
depends on δ) finishes the proof.
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Dudley Dvoretzky
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