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The empirical spectral measure

Suppose that M is an n × n random matrix with eigenvalues
λ1, . . . , λn.

The empirical spectral measure µ of M is the (random) measure

µ :=
1
n

n∑
k=1

δλk .
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Wigner’s Theorem

For each n ∈ N, let {Yi}1≤i , {Zij}1≤i<j be independent
collections of i.i.d. random variables, with

EY1 = EZ12 = 0 EZ 2
12 = 1 EY 2

1 <∞.

Let Mn be the symmetric random matrix with diagonal entries Yi
and off-diagonal entries Zij or Zji .

The empirical spectral measure µn of
1√
n

Mn converges, weakly in

probability, to the semi-circular law:

1
2π

√
4− x21|x |≤2dx .
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Some random matrix ensembles

I Wigner matrices: symmetric with i.i.d. entries
I GOE, GUE

I Wishart (random covariance) matrices: take X an m × n
(m ≥ n) random matrix with i.i.d entries, and define
Mn := X ∗X .

I The Ginibre ensemble: Mn has i.i.d. (real or complex)
Gaussian entries.

I Uniform random matrices: random matrices chosen
according to Haar measure on a compact matrix group

I O (n) ,SO (n) ,U (n) ,SU (n) ,Sp (2n)
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Determinantal structure

The set of eigenvalues of many types of random matrices are
determinantal point processes with symmetric kernels:

KN(x , y) Λ

GUE
n−1∑
j=0

hj(x)hj(y)e−
(x2+y2)

2 R

U (N)
N−1∑
j=0

eij(x−y) [0,2π)

Complex Ginibre
1
π

N−1∑
j=0

(zw)j

j!
e−

(|z|2+|w|2)
2 {|z| = 1}
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The gift of determinantal point processes

Theorem (Hough/Krishnapur/Peres/Virág)
Let K : Λ× Λ→ C be the kernel of a determinantal point
process, and suppose the corresponding integral operator is
self-adjoint, nonnegative, and locally trace-class.

For D ⊆ Λ, let ND denote the number of particles of the point
process in D. Then

ND
d
=
∑

k

ξk ,

where {ξk} is a collection of independent Bernoulli random
variables.
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Concentration of the counting function

Since ND is a sum of i.i.d. Bernoullis, Bernstein’s inequality
applies:

P [|ND − END| > t ] ≤ 2 exp

(
−min

{
t2

4σ2
D
,

t
2

})
,

where σ2
D = VarND.
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Concentration of individual eigenvalues

Dallaporta’s argument: Let λ1 < λ2 < · · · < λN be the
eigenvalues of a GUE matrix, and define their predicted
locations γk by

ρsc((−∞, γk ]) =
1

2π

∫ γk

−2

√
4− x2dx =

k
N
.

For 1 ≤ k ≤ N,

P
[
λk − γk ≥

u
N

]
= P

[
Nγk+

u
N
< k

]
,

but
E
[
Nγk+

u
N

]
≈ k + Cu,

and (for a large range of t) Nt concentrates around its mean.
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Proposition (Dallaporta)

Fix η ∈
(

0,
1
2

]
, and suppose that ηN ≤ k ≤ (1− η)N. There

exist constants C, c, c′, δ (all depending on η) such that for
c ≤ u ≤ c′N,

P
[
|λk − γk | ≥

u
N

]
≤ 4 exp

[
− C2u2

2cδ log(N) + Cu

]
.



Expected distance to the semi-circle law

The Lp-Kantorovich distance between probability measures µ
and ν on a nice metric space X is

Wp(µ, ν) := inf

{[∫
X 2

d(x , y)pdπ(x , y)

] 1
p

∣∣∣∣∣ π(A×X )=µ(A)

π(X×B)=ν(B)

}
.

=⇒ If µN :=
1
N

N∑
k=1

δλk and νN :=
1
N

N∑
k=1

δγk ,

then

W p
p (µN , νN) ≤ 1

N

N∑
k=1

|λk − γk |p.



Expected distance to the semi-circle law

The Lp-Kantorovich distance between probability measures µ
and ν on a nice metric space X is

Wp(µ, ν) := inf

{[∫
X 2

d(x , y)pdπ(x , y)

] 1
p

∣∣∣∣∣ π(A×X )=µ(A)

π(X×B)=ν(B)

}
.

=⇒ If µN :=
1
N

N∑
k=1

δλk and νN :=
1
N

N∑
k=1

δγk ,

then

W p
p (µN , νN) ≤ 1

N

N∑
k=1

|λk − γk |p.



Expected distance to the semi-circle law

The Lp-Kantorovich distance between probability measures µ
and ν on a nice metric space X is

Wp(µ, ν) := inf

{[∫
X 2

d(x , y)pdπ(x , y)

] 1
p

∣∣∣∣∣ π(A×X )=µ(A)

π(X×B)=ν(B)

}
.

=⇒ If µN :=
1
N

N∑
k=1

δλk and νN :=
1
N

N∑
k=1

δγk ,

then

W p
p (µN , νN) ≤ 1

N

N∑
k=1

|λk − γk |p.



W p
p (µN , νN) ≤ 1

N

N∑
k=1

|λk − γk |p.

Concentration of λk near γk gives good bounds on E|λk − γk |p.

In particular, Dallaporta’s estimate for the concentration of λk
about γk gives that

EW2(µN , ρsc) ≤ C

√
log(N)

N
.
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Eigenvalue concentration for other ensembles

If U is a random unitary matrix, then U has eigenvalues

{eiθk}Nk=1,

for 0 ≤ θ1 < θ2 < · · · < θN < 2π.
We define the predicted locations to be

{e
ik
N }Nk=1.

concentration
of N[0,θ]

   concentration
of eiθk about e

ik
N

   EWp(µN , ν) ≤
Cp
√

log(N) + 1
N

,

where ν is the uniform distribution on S1 ⊆ C.
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Eigenvalue concentration for other ensembles

Theorem (Rains)
For any m ≥ 1,

[U (N)]m
e.w .∼

⊕
0≤k<m

U
(⌈

N − k
m

⌉)
.

=⇒ If U ∼ Haar(U (N)) and N (m)
θ is the number of

eigenvalues eiφk of Um with 0 ≤ φk ≤ θ, then

N (m)
θ

d
= N1,θ + · · ·+Nm,θ,

where the Nk ,θ are the counting functions for m

independent random matrices from U
(⌈

N − k
m

⌉)
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Eigenvalue concentration for other ensembles

Then N (m)
θ is also equal in distribution to a sum of independent

Bernoullis, and the earlier route applies:

concentration
of N (m)

[0,θ]
   concentration

of eiθk about e
ik
N

   EWp(µN , ν) ≤
Cp
√

m log
(

N
m

)
+ 1

N
,

where ν is the uniform distribution on S1 ⊆ C, and
m ∈ {1, . . . ,N}.
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Eigenvalue concentration for other ensembles

The eigenvalues of the complex Ginibre ensemble are also a
determinantal point process, but on C.

concentration
of ND

   ?
We define the spiral order ≺ on C: say
w ≺ z if
I b
√

n |w |c < b
√

n |z|c;
or

I b
√

n |w |c = b
√

n |z|c and arg w < arg z;
or

I b
√

n |w |c = b
√

n |z|c, arg w = arg z, and
|w | ≥ |z|.
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Eigenvalue concentration for other ensembles

We apply the concentration of
the counting function to the
sets:

and define predicted
eigenvalue locations:

   EW2(µN , ν) ≤ C
(

log(N)

N

) 1
4

,

where ν is the uniform distribution on the circle
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Almost sure convergence rates

Many random matrix ensembles satisfy the following
concentration property:

Let F : S ⊆MN → R be 1-Lipschitz with respect to ‖ · ‖H.S..
Then

P
[∣∣F (M)− EF (M)

∣∣ > t
]
≤ Ce−cNt2

.

For a normal matrix, the Hoffman-Wieland inequality implies
that W1( µM , µ )

spectral

measure of M

reference

measure

is a
1√
N

-Lipschitz function of M.
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Almost sure convergence rates

Almost sure convergence rates

Concentration in an
ensemble of normal
matrices

Good estimates for
EWp(µM , µ) from d.p.p.
structure



Ensembles with the concentration phenomenon

and
d.p.p. structure

I GUE

I Wigner matrices in which the entries satisfy a quadratic
transportation cost inequality with constant

c√
N

.

I The compact classical groups: O (N), SO (N), U (N),
SU (N), Sp (2N)

I Ensembles with matrix density ∝ e−N Tr(u(M)), with
u′′(x) ≥ c > 0.
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Without determinantal structure

Almost sure convergence rates

Concentration in an
ensemble of normal
matrices

Good estimates for
EWp(µM , µ) from d.p.p.
structure concentration



Average distance to average without determinantal
structure

Define the centered stochastic process

Xf :=

∫
fdµM − E

∫
fdµM ,

indexed by {f : ‖f‖BL ≤ 1} .

The concentration phenomenon implies that

P
[∣∣Xf − Xg

∣∣ ≥ t
]
≤ Ce

− cNt2

‖f−g‖2BL ;

that is, {Xf} is a sub-Gaussian process with respect to

dN(f ,g) :=
‖f − g‖BL√

N
.
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structure

Define the centered stochastic process

Xf :=

∫
fdµM − E

∫
fdµM ,

indexed by {f : ‖f‖BL ≤ 1} .

The concentration phenomenon implies that

P
[∣∣Xf − Xg

∣∣ ≥ t
]
≤ Ce

− cNt2

‖f−g‖2BL ;

that is, {Xf} is a sub-Gaussian process with respect to

dN(f ,g) :=
‖f − g‖BL√

N
.



Theorem (Dudley)
If a stochastic process {Xt}t∈T satisfies the a sub-Gaussian
increment condition

P
[∣∣Xt − Xs

∣∣ > ε
]
≤ Ce

− ε2

2δ2(s,t) ∀ε > 0,

then
E sup

t∈T
Xt ≤ C

∫ ∞
0

√
log N(T , δ, ε)dε,

where N(T , δ, ε) is the ε-covering number of T with respect to
the distance δ.

For us, T = {f : ‖fBL ≤ 1} and δ(f ,g) =
‖f − g‖BL√

N
.
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where N(T , δ, ε) is the ε-covering number of T with respect to
the distance δ.
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.



So: what is N
(

T ,
‖ · ‖BL√

N
, ε

)
?

Bad news: N
(

T ,
‖ · ‖BL√

N
, ε

)
=∞.

This is not that big a deal:
approximating Lipschitz functions by piecewise affine functions
and using volumetric estimates in the resulting
finite-dimensional normed space of approximating functions
does the job.
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T ,
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N
, ε
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=∞.

This is not that big a deal:
approximating Lipschitz functions by piecewise affine functions
and using volumetric estimates in the resulting
finite-dimensional normed space of approximating functions
does the job.



Almost sure rates without a priori concentration of
distance

Almost sure convergence rates

Concentration in an
ensemble of normal
matrices of individual
eigenvalues

Good estimates for
EWp(µM , µ) from d.p.p.
structure



The best of our worlds: U (N) and friends, GUE

Almost sure convergence rates

Concentration in an
ensemble of normal
matrices

Good estimates for
EWp(µM , µ) from d.p.p.
structure



Thank you.


