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Let M, be the symmetric random matrix with diagonal entries Y;
and off-diagonal entries Z; or Z;.

The empirical spectral measure 1, of
1 .

—nMn converges, weakly in

probability, to the semi-circular law:

1
E V4 — X2ﬂ|x‘§2dx.
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» Wishart (random covariance) matrices: take X an m x n
(m > n) random matrix with i.i.d entries, and define
M, = X*X.

» The Ginibre ensemble: M, has i.i.d. (real or complex)
Gaussian entries.

» Uniform random matrices: random matrices chosen
according to Haar measure on a compact matrix group

» O(n),SO(n),U(n),SU(N),Sp(2n)
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The set of eigenvalues of many types of random matrices are
determinantal point processes with symmetric kernels:
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GUE > hi(x)h(y)e > R
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The gift of determinantal point processes

Theorem (Hough/Krishnapur/Peres/Virag)

Let K : A x N — C be the kernel of a determinantal point
process, and suppose the corresponding integral operator is
self-adjoint, nonnegative, and locally trace-class.

For D C A, let Np denote the number of particles of the point
process in D. Then
d
Np =) &,
K

where {{«} is a collection of independent Bernoulli random
variables.
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Concentration of the counting function

Since Np is a sum of i.i.d. Bernoullis, Bernstein’s inequality
applies:

2
P[INp —ENp| > t] < 2exp (—min{ i t})j

40%7 2

where 0% = Var Np.
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Dallaporta’s argument: Let Ay < Ao < --- < Ay be the
eigenvalues of a GUE matrix, and define their predicted
locations ~, by

pacl(o0. ) = g [ VA=K =

For1 < k <N,
P A= 2 5] =P[Myry <K,

but
E[N

ry] mk+Cu

and (for a large range of t) N; concentrates around its mean.



Proposition (Dallaporta)

. 1
Fixn e (0, 2], and suppose thatnN < k < (1 —n)N. There

exist constants C, c, ¢, (all depending on n) such that for
c<u<cN,

C2uP
~2cslog(N) + Cu| "

P [l)\k — Ykl = %} < 4exp[
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X2

N N
1 1
= If uy = NZ(SM and vy = Nzé“/k’
k=1 k=1
then

N
.
W5 (1w, va) < N > 1Ak — wlP-
k=1
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W5 (1ns vi) Z\)\k — Ykl
k:

Concentration of \x near ~, gives good bounds on E|\, — ~[P.

In particular, Dallaporta’s estimate for the concentration of A
about v, gives that

log(N)

<
EWa(un, psc) < C N
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ik
{em}iL.
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Cp+/log(N 1
A EWp(un,v) < i O?V( s :

where v is the uniform distribution on S' C C.
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Theorem (Rains)
Forany m>1,

o= @ u([*:4])

0<k<m

__. If U~ Haar(U(N)) and A" is the number of
eigenvalues e« of U™ with 0 < ¢ < 6, then

Ne(m) g/\ﬂ,9+“'+/\fm,97

where the N ¢ are the counting functions for m
N —k
independent random matrices from U GmD :
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Then /\/9('") is also equal in distribution to a sum of independent
Bernoullis, and the earlier route applies:

concentr,iltion 3 concentration
of Vo g of &% about e

Cpy/mlog (%) +1
W EWP(MNﬂ/) >~

N )

where v is the uniform distribution on S' C C, and
me{1,...,N}.
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Eigenvalue concentration for other ensembles

The eigenvalues of the complex Ginibre ensemble are also a
determinantal point process, but on C.

concentration s ?
of ./\/b
We define the spiral order < on C: say
w =< zif
> [Vnlwl] < [Vnlz|};
or
» [Vn|w|| = [Vn|z|] and argw < arg z;
or

» |vVn|w|] = |Vn|z|], argw = arg z, and
(w| > |z].
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We apply the concentration of and define predicted
the counting function to the eigenvalue locations:
sets:
&
0 -
log(N) *
> EWy(juy, v) < C (09,5,)> |

where v is the uniform distribution on the circle
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Almost sure convergence rates

Many random matrix ensembles satisfy the following
concentration property:

Let F: S C My — R be 1-Lipschitz with respect to || - ||4.s.-
Then ,
P[\F(M) ~EF(M)| > t} < Ce~oNE,

For a normal matrix, the Hoffman-Wieland inequality implies
that W1( 127 )

spectraIA\ \reference

measure of M measure

L -Lipschitz function of M.

VN

is a
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G

e

Concentration in an
ensemble of normal
matrices

Good estimates
EWp(um. 1) from
structure

for
d.p.p.
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» GUE

» The compact classical groups: O (N), SO (N), U (N),
SU(N), Sp (2N)
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Almost sure convergence rates

G~09 Y

Concentration in an Good estimates for
ensemble of normal EWp(pm, ) from  ekpp-

matrices strueture concentration
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Average distance to average without determinantal
structure

Define the centered stochastic process

e :—/fd,uM—}E/fduM,

indexed by {f : ||fllg. < 1}.
The concentration phenomenon implies that

_ oNE2

P[|x ~ X| 2 1] < Ce ok

that is, {X¢} is a sub-Gaussian process with respect to

_ |f — gHBL'

dN(fag) : \/N
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If a stochastic process { X;}ic 1 satisfies the a sub-Gaussian
increment condition

2

P[|X:— Xs| > ¢] < Ce s Ve > 0,

then

Esup X; < C/ V9I0g N(T, 6, €)de,
0

teT

where N(T, ¢, ¢) is the e-covering number of T with respect to
the distance ¢.

f—
Forus, T ={f: |/fs. <1} and §(f,9) = '%BL_
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- |- s >
So: whatis N[ T, e )?
( VN ¢

Bad news: N (T, \./||NBL,€> = 00.

This is not that big a deal:

approximating Lipschitz functions by piecewise affine functions
and using volumetric estimates in the resulting
finite-dimensional normed space of approximating functions
does the job.
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The best of our worlds: U (N) and friends, GUE

Almost sure convergence rates

G
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Good estimates
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structure

for
d.p.p.



Thank you.




