Uniformity of Eigenvalues of Some Random Matrices

Elizabeth Meckes

Northeast Probability Seminar
November 21, 2014

The empirical spectral measure

The empirical spectral measure

Suppose that M is an $n \times n$ random matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

The empirical spectral measure μ of M is the (random) measure

$$
\mu:=\frac{1}{n} \sum_{k=1}^{n} \delta_{\lambda_{k}} .
$$

The empirical spectral measure

Suppose that M is an $n \times n$ random matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

The empirical spectral measure μ of M is the (random) measure

$$
\mu:=\frac{1}{n} \sum_{k=1}^{n} \delta_{\lambda_{k}} .
$$

Wigner's Theorem

Wigner's Theorem

For each $n \in \mathbb{N}$, let $\left\{Y_{i}\right\}_{1 \leq i},\left\{Z_{i j}\right\}_{1 \leq i<j}$ be independent collections of i.i.d. random variables, with

$$
\mathbb{E} Y_{1}=\mathbb{E} Z_{12}=0 \quad \mathbb{E} Z_{12}^{2}=1 \quad \mathbb{E} Y_{1}^{2}<\infty
$$

Let M_{n} be the symmetric random matrix with diagonal entries Y_{i} and off-diagonal entries $Z_{i j}$ or $Z_{j i}$.

Wigner's Theorem

For each $n \in \mathbb{N}$, let $\left\{Y_{i}\right\}_{1 \leq i},\left\{Z_{i j}\right\}_{1 \leq i<j}$ be independent collections of i.i.d. random variables, with

$$
\mathbb{E} Y_{1}=\mathbb{E} Z_{12}=0 \quad \mathbb{E} Z_{12}^{2}=1 \quad \mathbb{E} Y_{1}^{2}<\infty .
$$

Let M_{n} be the symmetric random matrix with diagonal entries Y_{i} and off-diagonal entries $Z_{i j}$ or $Z_{j i}$.

The empirical spectral measure μ_{n} of
$\frac{1}{\sqrt{n}} M_{n}$ converges, weakly in
probability, to the semi-circular law:

$$
\frac{1}{2 \pi} \sqrt{4-x^{2}} \mathbb{1}_{|x| \leq 2} d x
$$

Some random matrix ensembles

Some random matrix ensembles

- Wigner matrices: symmetric with i.i.d. entries

Some random matrix ensembles

- Wigner matrices: symmetric with i.i.d. entries
- GOE, GUE

Some random matrix ensembles

- Wigner matrices: symmetric with i.i.d. entries
- GOE, GUE
- Wishart (random covariance) matrices: take X an $m \times n$ ($m \geq n$) random matrix with i.i.d entries, and define $M_{n}:=X^{*} X$.

Some random matrix ensembles

- Wigner matrices: symmetric with i.i.d. entries
- GOE, GUE
- Wishart (random covariance) matrices: take X an $m \times n$ ($m \geq n$) random matrix with i.i.d entries, and define $M_{n}:=X^{*} X$.
- The Ginibre ensemble: M_{n} has i.i.d. (real or complex) Gaussian entries.

Some random matrix ensembles

- Wigner matrices: symmetric with i.i.d. entries
- GOE, GUE
- Wishart (random covariance) matrices: take X an $m \times n$ ($m \geq n$) random matrix with i.i.d entries, and define $M_{n}:=X^{*} X$.
- The Ginibre ensemble: M_{n} has i.i.d. (real or complex) Gaussian entries.
- Uniform random matrices: random matrices chosen according to Haar measure on a compact matrix group

Some random matrix ensembles

- Wigner matrices: symmetric with i.i.d. entries
- GOE, GUE
- Wishart (random covariance) matrices: take X an $m \times n$ ($m \geq n$) random matrix with i.i.d entries, and define $M_{n}:=X^{*} X$.
- The Ginibre ensemble: M_{n} has i.i.d. (real or complex) Gaussian entries.
- Uniform random matrices: random matrices chosen according to Haar measure on a compact matrix group
- $\mathbb{O}(n), \mathbb{S O}(n), \mathbb{U}(n), \mathbb{S U}(n), \mathbb{S p}(2 n)$

Determinantal structure

Determinantal structure

The set of eigenvalues of many types of random matrices are determinantal point processes with symmetric kernels:

Determinantal structure

The set of eigenvalues of many types of random matrices are determinantal point processes with symmetric kernels:

	$K_{N}(x, y)$	Λ
GUE	$\sum_{j=0}^{n-1} h_{j}(x) h_{j}(y) e^{-\frac{\left(x^{2}+y^{2}\right)}{2}}$	\mathbb{R}
$\mathbb{U}(N)$	$\sum_{j=0}^{N-1} e^{i j(x-y)}$	$[0,2 \pi)$
Complex Ginibre	$\frac{1}{\pi} \sum_{j=0}^{N-1} \frac{(z \bar{W})^{j}}{j!} e^{-\frac{\left(\|z\|^{2}+\left\|\| \|^{2}\right)\right.}{2}}$	$\{\|z\|=1\}$

The gift of determinantal point processes

The gift of determinantal point processes

Theorem (Hough/Krishnapur/Peres/Virág)
Let $K: \wedge \times \wedge \rightarrow \mathbb{C}$ be the kernel of a determinantal point process, and suppose the corresponding integral operator is self-adjoint, nonnegative, and locally trace-class.
For $D \subseteq \Lambda$, let \mathcal{N}_{D} denote the number of particles of the point process in D. Then

$$
\mathcal{N}_{D} \stackrel{d}{=} \sum_{k} \xi_{k},
$$

where $\left\{\xi_{k}\right\}$ is a collection of independent Bernoulli random variables.

Concentration of the counting function

Concentration of the counting function

Since \mathcal{N}_{D} is a sum of i.i.d. Bernoullis, Bernstein's inequality applies:

$$
\mathbb{P}\left[\left|\mathcal{N}_{D}-\mathbb{E} \mathcal{N}_{D}\right|>t\right] \leq 2 \exp \left(-\min \left\{\frac{t^{2}}{4 \sigma_{D}^{2}}, \frac{t}{2}\right\}\right)
$$

where $\sigma_{D}^{2}=\operatorname{Var} \mathcal{N}_{D}$.

Concentration of individual eigenvalues

Concentration of individual eigenvalues

Dallaporta's argument: Let $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{N}$ be the eigenvalues of a GUE matrix, and define their predicted locations γ_{k} by

$$
\rho_{s c}\left(\left(-\infty, \gamma_{k}\right]\right)=\frac{1}{2 \pi} \int_{-2}^{\gamma_{k}} \sqrt{4-x^{2}} d x=\frac{k}{N}
$$

Concentration of individual eigenvalues

Dallaporta's argument: Let $\lambda_{1}<\lambda_{2}<\cdots<\lambda_{N}$ be the eigenvalues of a GUE matrix, and define their predicted locations γ_{k} by

$$
\rho_{s c}\left(\left(-\infty, \gamma_{k}\right]\right)=\frac{1}{2 \pi} \int_{-2}^{\gamma_{k}} \sqrt{4-x^{2}} d x=\frac{k}{N}
$$

For $1 \leq k \leq N$,

$$
\mathbb{P}\left[\lambda_{k}-\gamma_{k} \geq \frac{u}{N}\right]=\mathbb{P}\left[\mathcal{N}_{\gamma_{k}+\frac{u}{N}}<k\right]
$$

but

$$
\mathbb{E}\left[\mathcal{N}_{\gamma_{k}+\frac{u}{N}}\right] \approx k+C u
$$

and (for a large range of t) \mathcal{N}_{t} concentrates around its mean.

Proposition (Dallaporta)
Fix $\eta \in\left(0, \frac{1}{2}\right]$, and suppose that $\eta N \leq k \leq(1-\eta) N$. There exist constants C, c, c^{\prime}, δ (all depending on η) such that for $c \leq u \leq c^{\prime} N$,

$$
\mathbb{P}\left[\left|\lambda_{k}-\gamma_{k}\right| \geq \frac{u}{N}\right] \leq 4 \exp \left[-\frac{C^{2} u^{2}}{2 c \delta \log (N)+C u}\right] .
$$

Expected distance to the semi-circle law

Expected distance to the semi-circle law

The L_{p}-Kantorovich distance between probability measures μ and ν on a nice metric space \mathcal{X} is

$$
W_{p}(\mu, \nu):=\inf \left\{\left[\int_{\mathcal{X}^{2}} d(x, y)^{p} d \pi(x, y)\right]^{\frac{1}{p}} \left\lvert\, \begin{array}{l}
\pi(A \times \mathcal{X})=\mu(A) \\
\pi(\mathcal{X} \times B)=\nu(B)
\end{array}\right.\right\} .
$$

Expected distance to the semi-circle law

The L_{p}-Kantorovich distance between probability measures μ and ν on a nice metric space \mathcal{X} is

$$
\begin{gathered}
W_{p}(\mu, \nu):=\inf \left\{\left[\int_{\mathcal{X}^{2}} d(x, y)^{p} d \pi(x, y)\right]^{\frac{1}{p}} \left\lvert\, \begin{array}{l}
\pi(A \times \mathcal{X})=\mu(A) \\
\pi(\mathcal{X} \times B)=\nu(B)
\end{array}\right.\right\} \\
\Longrightarrow \text { If } \mu_{N}:=\frac{1}{N} \sum_{k=1}^{N} \delta_{\lambda_{k}} \quad \text { and } \quad \nu_{N}:=\frac{1}{N} \sum_{k=1}^{N} \delta_{\gamma_{k}}
\end{gathered}
$$

then

$$
W_{p}^{p}\left(\mu_{N}, \nu_{N}\right) \leq \frac{1}{N} \sum_{k=1}^{N}\left|\lambda_{k}-\gamma_{k}\right|^{p}
$$

$$
W_{p}^{p}\left(\mu_{N}, \nu_{N}\right) \leq \frac{1}{N} \sum_{k=1}^{N}\left|\lambda_{k}-\gamma_{k}\right|^{p}
$$

$$
W_{p}^{p}\left(\mu_{N}, \nu_{N}\right) \leq \frac{1}{N} \sum_{k=1}^{N}\left|\lambda_{k}-\gamma_{k}\right|^{p}
$$

Concentration of λ_{k} near γ_{k} gives good bounds on $\mathbb{E}\left|\lambda_{k}-\gamma_{k}\right|^{p}$.
$W_{p}^{p}\left(\mu_{N}, \nu_{N}\right) \leq \frac{1}{N} \sum_{k=1}^{N}\left|\lambda_{k}-\gamma_{k}\right|^{p}$.
Concentration of λ_{k} near γ_{k} gives good bounds on $\mathbb{E}\left|\lambda_{k}-\gamma_{k}\right|^{p}$.
In particular, Dallaporta's estimate for the concentration of λ_{k} about γ_{k} gives that

$$
\mathbb{E} W_{2}\left(\mu_{N}, \rho_{s c}\right) \leq C \frac{\sqrt{\log (N)}}{N}
$$

Eigenvalue concentration for other ensembles

Eigenvalue concentration for other ensembles

If U is a random unitary matrix, then U has eigenvalues

$$
\left\{e^{i \theta_{k}}\right\}_{k=1}^{N}
$$

for $0 \leq \theta_{1}<\theta_{2}<\cdots<\theta_{N}<2 \pi$.

Eigenvalue concentration for other ensembles

If U is a random unitary matrix, then U has eigenvalues

$$
\left\{e^{i \theta_{k}}\right\}_{k=1}^{N},
$$

for $0 \leq \theta_{1}<\theta_{2}<\cdots<\theta_{N}<2 \pi$.
We define the predicted locations to be

$$
\left\{e^{\frac{i k}{N}}\right\}_{k=1}^{N} .
$$

Eigenvalue concentration for other ensembles

If U is a random unitary matrix, then U has eigenvalues

$$
\left\{e^{i \theta_{k}}\right\}_{k=1}^{N},
$$

for $0 \leq \theta_{1}<\theta_{2}<\cdots<\theta_{N}<2 \pi$.
We define the predicted locations to be

$$
\left\{e^{\frac{i k}{N}}\right\}_{k=1}^{N} .
$$

concentration
of $\mathcal{N}_{[0, \theta]}$
concentration
of $e^{i \theta_{k}}$ about $e^{\frac{i k}{N}}$

Eigenvalue concentration for other ensembles

If U is a random unitary matrix, then U has eigenvalues

$$
\left\{e^{i \theta_{k}}\right\}_{k=1}^{N},
$$

for $0 \leq \theta_{1}<\theta_{2}<\cdots<\theta_{N}<2 \pi$.
We define the predicted locations to be

$$
\left\{e^{\frac{i k}{N}}\right\}_{k=1}^{N}
$$

concentration
of $\mathcal{N}_{[0, \theta]}$
concentration
of $e^{i \theta_{k}}$ about $e^{\frac{i k}{N}}$

$$
\mathbb{E} W_{p}\left(\mu_{N}, \nu\right) \leq \frac{C p \sqrt{\log (N)+1}}{N}
$$

where ν is the uniform distribution on $\mathbb{S}^{1} \subseteq \mathbb{C}$.

Eigenvalue concentration for other ensembles

Eigenvalue concentration for other ensembles

Theorem (Rains)
For any $m \geq 1$,

Eigenvalue concentration for other ensembles

Theorem (Rains)
For any $m \geq 1$,

$$
[\mathbb{U}(N)]^{m} \stackrel{e . w}{\sim} \bigoplus_{0 \leq k<m} \mathbb{U}\left(\left\lceil\frac{N-k}{m}\right\rceil\right) .
$$

If $U \sim \operatorname{Haar}(\mathbb{U}(N))$ and $\mathcal{N}_{\theta}^{(m)}$ is the number of eigenvalues $e^{i \phi_{k}}$ of U^{m} with $0 \leq \phi_{k} \leq \theta$, then

$$
\mathcal{N}_{\theta}^{(m)} \stackrel{d}{=} \mathcal{N}_{1, \theta}+\cdots+\mathcal{N}_{m, \theta},
$$

where the $\mathcal{N}_{k, \theta}$ are the counting functions for m independent random matrices from $\mathbb{U}\left(\left\lceil\frac{N-k}{m}\right\rceil\right)$.

Eigenvalue concentration for other ensembles

Then $\mathcal{N}_{\theta}^{(m)}$ is also equal in distribution to a sum of independent Bernoullis, and the earlier route applies:

Eigenvalue concentration for other ensembles

Then $\mathcal{N}_{\theta}^{(m)}$ is also equal in distribution to a sum of independent Bernoullis, and the earlier route applies:
concentration
of $\mathcal{N}_{[0, \theta]}^{(m)}$
concentration
of $e^{i \theta_{k}}$ about $e^{i \frac{i k}{N}}$

$$
\mathbb{E} W_{p}\left(\mu_{N}, \nu\right) \leq \frac{C p \sqrt{m \log \left(\frac{N}{m}\right)+1}}{N}
$$

where ν is the uniform distribution on $\mathbb{S}^{1} \subseteq \mathbb{C}$, and $m \in\{1, \ldots, N\}$.

Eigenvalue concentration for other ensembles

The eigenvalues of the complex Ginibre ensemble are also a determinantal point process, but on \mathbb{C}.

Eigenvalue concentration for other ensembles

The eigenvalues of the complex Ginibre ensemble are also a determinantal point process, but on \mathbb{C}.
concentration
of \mathcal{N}_{D}

Eigenvalue concentration for other ensembles

The eigenvalues of the complex Ginibre ensemble are also a determinantal point process, but on \mathbb{C}.
concentration

$$
\text { of } \mathcal{N}_{D}
$$

We define the spiral order \prec on \mathbb{C} : say $w \prec z$ if

- $\lfloor\sqrt{n}|w|\rfloor<\lfloor\sqrt{n}|z|\rfloor$; or
- $\lfloor\sqrt{n}|w|\rfloor=\lfloor\sqrt{n}|z|\rfloor$ and $\arg w<\arg z$; or

- $\lfloor\sqrt{n}|w|\rfloor=\lfloor\sqrt{n}|z|\rfloor, \arg w=\arg z$, and $|w| \geq|z|$.

Eigenvalue concentration for other ensembles

We apply the concentration of the counting function to the sets:
and define predicted eigenvalue locations:

Eigenvalue concentration for other ensembles

We apply the concentration of the counting function to the sets:

and define predicted eigenvalue locations:

$$
\leadsto \mathbb{E} W_{2}\left(\mu_{N}, \nu\right) \leq C\left(\frac{\log (N)}{N}\right)^{\frac{1}{4}},
$$

where ν is the uniform distribution on the circle

Almost sure convergence rates

Almost sure convergence rates

Many random matrix ensembles satisfy the following concentration property:
Let $F: S \subseteq \mathbb{M}_{N} \rightarrow \mathbb{R}$ be 1-Lipschitz with respect to $\|\cdot\|_{\text {H.S. }}$. Then

$$
\mathbb{P}[|F(M)-\mathbb{E} F(M)|>t] \leq C e^{-c N t^{2}}
$$

Almost sure convergence rates

Many random matrix ensembles satisfy the following concentration property:
Let $F: S \subseteq \mathbb{M}_{N} \rightarrow \mathbb{R}$ be 1-Lipschitz with respect to $\|\cdot\|_{\text {H.S. }}$. Then

$$
\mathbb{P}[|F(M)-\mathbb{E} F(M)|>t] \leq C e^{-c N t^{2}}
$$

For a normal matrix, the Hoffman-Wieland inequality implies that $\begin{array}{ll}W_{1}\left(\mu_{M}, \mu\right) \\ & \begin{array}{l}\text { spectral } \\ \text { measure of } M\end{array} \\ & \begin{array}{r}\text { reference } \\ \text { measure }\end{array}\end{array}$
is a $\frac{1}{\sqrt{N}}$-Lipschitz function of M.

Almost sure convergence rates

Almost sure convergence rates

Ensembles with the concentration phenomenon

Ensembles with the concentration phenomenon

- GUE

Ensembles with the concentration phenomenon

- GUE
- Wigner matrices in which the entries satisfy a quadratic transportation cost inequality with constant $\frac{c}{\sqrt{N}}$.

Ensembles with the concentration phenomenon

- GUE
- Wigner matrices in which the entries satisfy a quadratic transportation cost inequality with constant $\frac{C}{\sqrt{N}}$.
- The compact classical groups: $\mathbb{O}(N), \mathbb{S O}(N), \mathbb{U}(N)$, $\mathbb{S U}(N), \mathbb{S p}(2 N)$

Ensembles with the concentration phenomenon

- GUE
- Wigner matrices in which the entries satisfy a quadratic transportation cost inequality with constant $\frac{C}{\sqrt{N}}$.
- The compact classical groups: $\mathbb{O}(N), \mathbb{S O}(N), \mathbb{U}(N)$, $\mathbb{S U}(N), \mathbb{S p}(2 N)$
- Ensembles with matrix density $\propto e^{-N \operatorname{Tr}(u(M))}$, with $u^{\prime \prime}(x) \geq c>0$.

Ensembles with the concentration phenomenon and d.p.p. structure

- GUE
- The compact classical groups: $\mathbb{O}(N), \mathbb{S O}(N), \mathbb{U}(N)$, $\mathbb{S U}(N), \mathbb{S p}(2 N)$

Without determinantal structure

Almost sure convergence rates

Concentration in an ensemble of normal matrices

Average distance to average without determinantal structure

Define the centered stochastic process

$$
X_{f}:=\int f d \mu_{M}-\mathbb{E} \int f d \mu_{M}
$$

indexed by $\left\{f:\|f\|_{B L} \leq 1\right\}$.

Average distance to average without determinantal structure

Define the centered stochastic process

$$
X_{f}:=\int f d \mu_{M}-\mathbb{E} \int f d \mu_{M}
$$

indexed by $\left\{f:\|f\|_{B L} \leq 1\right\}$.
The concentration phenomenon implies that

$$
\mathbb{P}\left[\left|X_{f}-X_{g}\right| \geq t\right] \leq C e^{-\frac{C N t^{2}}{\|f-g\|_{B L}^{2}}} ;
$$

that is, $\left\{X_{f}\right\}$ is a sub-Gaussian process with respect to

$$
d_{N}(f, g):=\frac{\|f-g\|_{B L}}{\sqrt{N}}
$$

Theorem (Dudley)
If a stochastic process $\left\{X_{t}\right\}_{t \in T}$ satisfies the a sub-Gaussian increment condition

$$
\mathbb{P}\left[\left|X_{t}-X_{s}\right|>\epsilon\right] \leq C e^{-\frac{\epsilon^{2}}{2 \delta^{2}(s, t)}} \quad \forall \epsilon>0,
$$

then

$$
\mathbb{E} \sup _{t \in T} X_{t} \leq C \int_{0}^{\infty} \sqrt{\log N(T, \delta, \epsilon)} d \epsilon
$$

where $N(T, \delta, \epsilon)$ is the ϵ-covering number of T with respect to the distance δ.

Theorem (Dudley)
If a stochastic process $\left\{X_{t}\right\}_{t \in T}$ satisfies the a sub-Gaussian increment condition

$$
\mathbb{P}\left[\left|X_{t}-X_{s}\right|>\epsilon\right] \leq C e^{-\frac{\epsilon^{2}}{2 \delta^{2}(s, t)}} \quad \forall \epsilon>0,
$$

then

$$
\mathbb{E} \sup _{t \in T} X_{t} \leq C \int_{0}^{\infty} \sqrt{\log N(T, \delta, \epsilon)} d \epsilon
$$

where $N(T, \delta, \epsilon)$ is the ϵ-covering number of T with respect to the distance δ.

For us, $T=\left\{f: \| f_{B L} \leq 1\right\}$ and $\delta(f, g)=\frac{\|f-g\|_{B L}}{\sqrt{N}}$.

So: what is $N\left(T, \frac{\|\cdot\|_{B L}}{\sqrt{N}}, \epsilon\right)$?

So: what is $N\left(T, \frac{\|\cdot\|_{B L}}{\sqrt{N}}, \epsilon\right)$?
Bad news: $N\left(T, \frac{\|\cdot\|_{B L}}{\sqrt{N}}, \epsilon\right)=\infty$.

So: what is $N\left(T, \frac{\|\cdot\|_{B L}}{\sqrt{N}}, \epsilon\right)$?
Bad news: $N\left(T, \frac{\|\cdot\|_{B L}}{\sqrt{N}}, \epsilon\right)=\infty$.
This is not that big a deal: approximating Lipschitz functions by piecewise affine functions and using volumetric estimates in the resulting finite-dimensional normed space of approximating functions does the job.

Almost sure rates without a priori concentration of distance

Almost sure convergence rates

Concentration in an ensemble of normal matrices of individual eigenvalues

Good estimates for $\mathbb{E} W_{p}\left(\mu_{M}, \mu\right)$ from d.p.p. structure

The best of our worlds: $\mathbb{U}(N)$ and friends, GUE

Almost sure convergence rates

Thank you.

