Uniformity of Eigenvalues of Some Random Matrices

Elizabeth Meckes

Northeast Probability Seminar

November 21, 2014

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The empirical spectral measure

The empirical spectral measure

Suppose that *M* is an $n \times n$ random matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$.

The empirical spectral measure μ of *M* is the (random) measure

$$\mu := \frac{1}{n} \sum_{k=1}^{n} \delta_{\lambda_k}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The empirical spectral measure

Suppose that *M* is an $n \times n$ random matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$.

The empirical spectral measure μ of *M* is the (random) measure

$$\mu := \frac{1}{n} \sum_{k=1}^{n} \delta_{\lambda_k}.$$

・ コット (雪) (小田) (山) (山)

Wigner's Theorem

Wigner's Theorem

For each $n \in \mathbb{N}$, let $\{Y_i\}_{1 \le i}, \{Z_{ij}\}_{1 \le i < j}$ be independent collections of i.i.d. random variables, with

$$\mathbb{E} Y_1 = \mathbb{E} Z_{12} = 0 \qquad \mathbb{E} Z_{12}^2 = 1 \qquad \mathbb{E} Y_1^2 < \infty.$$

Let M_n be the symmetric random matrix with diagonal entries Y_i and off-diagonal entries Z_{ij} or Z_{jj} .

Wigner's Theorem

For each $n \in \mathbb{N}$, let $\{Y_i\}_{1 \le i}, \{Z_{ij}\}_{1 \le i < j}$ be independent collections of i.i.d. random variables, with

$$\mathbb{E} Y_1 = \mathbb{E} Z_{12} = 0 \qquad \mathbb{E} Z_{12}^2 = 1 \qquad \mathbb{E} Y_1^2 < \infty.$$

Let M_n be the symmetric random matrix with diagonal entries Y_i and off-diagonal entries Z_{ij} or Z_{jj} .

The empirical spectral measure μ_n of $\frac{1}{\sqrt{n}}M_n$ converges, weakly in probability, to the semi-circular law:

$$\frac{1}{2\pi}\sqrt{4-x^2}\mathbb{1}_{|x|\leq 2}dx.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Wigner matrices: symmetric with i.i.d. entries

- Wigner matrices: symmetric with i.i.d. entries
 - ► GOE, GUE

- Wigner matrices: symmetric with i.i.d. entries
 - GOE, GUE
- ▶ Wishart (random covariance) matrices: take X an $m \times n$ ($m \ge n$) random matrix with i.i.d entries, and define $M_n := X^*X$.

- Wigner matrices: symmetric with i.i.d. entries
 - GOE, GUE
- ▶ Wishart (random covariance) matrices: take X an $m \times n$ ($m \ge n$) random matrix with i.i.d entries, and define $M_n := X^*X$.
- ► The Ginibre ensemble: *M_n* has i.i.d. (real or complex) Gaussian entries.

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Wigner matrices: symmetric with i.i.d. entries
 - GOE, GUE
- ▶ Wishart (random covariance) matrices: take X an $m \times n$ ($m \ge n$) random matrix with i.i.d entries, and define $M_n := X^*X$.
- ► The Ginibre ensemble: *M_n* has i.i.d. (real or complex) Gaussian entries.
- Uniform random matrices: random matrices chosen according to Haar measure on a compact matrix group

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

- Wigner matrices: symmetric with i.i.d. entries
 - GOE, GUE
- ▶ Wishart (random covariance) matrices: take X an $m \times n$ ($m \ge n$) random matrix with i.i.d entries, and define $M_n := X^*X$.
- ► The Ginibre ensemble: *M_n* has i.i.d. (real or complex) Gaussian entries.
- Uniform random matrices: random matrices chosen according to Haar measure on a compact matrix group

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

 $\blacktriangleright \mathbb{O}(n), \mathbb{SO}(n), \mathbb{U}(n), \mathbb{SU}(n), \mathbb{Sp}(2n)$

Determinantal structure

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

Determinantal structure

The set of eigenvalues of many types of random matrices are determinantal point processes with symmetric kernels:

Determinantal structure

The set of eigenvalues of many types of random matrices are determinantal point processes with symmetric kernels:

	$K_N(x,y)$	Λ
GUE	$\sum_{j=0}^{n-1} h_j(x) h_j(y) e^{-\frac{(x^2+y^2)}{2}}$	R
U (<i>N</i>)	$\sum_{j=0}^{N-1} e^{ij(x-y)}$	[0, 2 π)
Complex Ginibre	$\frac{1}{\pi} \sum_{j=0}^{N-1} \frac{(z\overline{w})^j}{j!} e^{-\frac{(z ^2 + w ^2)}{2}}$	{ <i>z</i> = 1}

◆ロト ◆個 ト ◆ ヨト ◆ ヨト ・ ヨー ・ のへで

The gift of determinantal point processes

▲□▶▲□▶▲目▶▲目▶ 目 のへで

The gift of determinantal point processes

Theorem (Hough/Krishnapur/Peres/Virág)

Let $K : \Lambda \times \Lambda \to \mathbb{C}$ be the kernel of a determinantal point process, and suppose the corresponding integral operator is self-adjoint, nonnegative, and locally trace-class.

For $D \subseteq \Lambda$, let \mathcal{N}_D denote the number of particles of the point process in D. Then

$$\mathcal{N}_D \stackrel{d}{=} \sum_k \xi_k,$$

くしゃ 人間 アメヨアメヨア ヨー もくの

where $\{\xi_k\}$ is a collection of independent Bernoulli random variables.

Concentration of the counting function

Concentration of the counting function

Since \mathcal{N}_D is a sum of i.i.d. Bernoullis, Bernstein's inequality applies:

$$\mathbb{P}\left[|\mathcal{N}_D - \mathbb{E}\mathcal{N}_D| > t\right] \le 2\exp\left(-\min\left\{\frac{t^2}{4\sigma_D^2}, \frac{t}{2}\right\}\right),$$

▲□▶▲□▶▲□▶▲□▶ □ ● ○ ●

where $\sigma_D^2 = \operatorname{Var} \mathcal{N}_D$.

Concentration of individual eigenvalues

Concentration of individual eigenvalues

Dallaporta's argument: Let $\lambda_1 < \lambda_2 < \cdots < \lambda_N$ be the eigenvalues of a GUE matrix, and define their predicted locations γ_k by

$$\rho_{sc}((-\infty,\gamma_k])=\frac{1}{2\pi}\int_{-2}^{\gamma_k}\sqrt{4-x^2}dx=\frac{k}{N}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Concentration of individual eigenvalues

Dallaporta's argument: Let $\lambda_1 < \lambda_2 < \cdots < \lambda_N$ be the eigenvalues of a GUE matrix, and define their predicted locations γ_k by

$$\rho_{sc}((-\infty,\gamma_k])=\frac{1}{2\pi}\int_{-2}^{\gamma_k}\sqrt{4-x^2}dx=\frac{k}{N}.$$

For
$$1 \le k \le N$$
,
 $\mathbb{P}\left[\lambda_k - \gamma_k \ge \frac{u}{N}\right] = \mathbb{P}\left[\mathcal{N}_{\gamma_k + \frac{u}{N}} < k\right]$,
but

$$\mathbb{E}\left[\mathcal{N}_{\gamma_k+\frac{u}{N}}\right]\approx k+Cu,$$

and (for a large range of *t*) N_t concentrates around its mean.

Proposition (Dallaporta) Fix $\eta \in \left(0, \frac{1}{2}\right]$, and suppose that $\eta N \leq k \leq (1 - \eta)N$. There exist constants C, c, c', δ (all depending on η) such that for $c \leq u \leq c'N$,

$$\mathbb{P}\left[|\lambda_k - \gamma_k| \ge \frac{u}{N}\right] \le 4 \exp\left[-\frac{C^2 u^2}{2c\delta \log(N) + Cu}\right]$$

・ロト・母ト・ヨト・ヨー つへで

Expected distance to the semi-circle law

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Expected distance to the semi-circle law

The L_p -Kantorovich distance between probability measures μ and ν on a nice metric space \mathcal{X} is

$$W_{p}(\mu,\nu) := \inf \left\{ \left[\int_{\mathcal{X}^{2}} d(x,y)^{p} d\pi(x,y) \right]^{\frac{1}{p}} \middle| \begin{array}{c} \pi(A \times \mathcal{X}) = \mu(A) \\ \pi(\mathcal{X} \times B) = \nu(B) \end{array} \right\}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Expected distance to the semi-circle law

The L_p -Kantorovich distance between probability measures μ and ν on a nice metric space \mathcal{X} is

$$W_{p}(\mu,\nu) := \inf \left\{ \left[\int_{\mathcal{X}^{2}} d(x,y)^{p} d\pi(x,y) \right]^{\frac{1}{p}} \middle| \begin{array}{c} \pi(A \times \mathcal{X}) = \mu(A) \\ \pi(\mathcal{X} \times B) = \nu(B) \end{array} \right\}.$$

$$\implies \text{ If } \mu_N := \frac{1}{N} \sum_{k=1}^N \delta_{\lambda_k} \quad \text{and} \quad \nu_N := \frac{1}{N} \sum_{k=1}^N \delta_{\gamma_k},$$

then

$$W^p_p(\mu_N, \nu_N) \leq rac{1}{N} \sum_{k=1}^N |\lambda_k - \gamma_k|^p.$$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

$$W^p_p(\mu_N,\nu_N) \leq \frac{1}{N}\sum_{k=1}^N |\lambda_k - \gamma_k|^p.$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

$$W_p^p(\mu_N,\nu_N) \leq \frac{1}{N}\sum_{k=1}^N |\lambda_k - \gamma_k|^p.$$

Concentration of λ_k near γ_k gives good bounds on $\mathbb{E}|\lambda_k - \gamma_k|^{\rho}$.

$$W^p_p(\mu_N,\nu_N) \leq rac{1}{N}\sum_{k=1}^N |\lambda_k - \gamma_k|^p.$$

Concentration of λ_k near γ_k gives good bounds on $\mathbb{E}|\lambda_k - \gamma_k|^p$.

In particular, Dallaporta's estimate for the concentration of λ_k about γ_k gives that

$$\mathbb{E} W_2(\mu_N,
ho_{sc}) \leq C rac{\sqrt{\log(N)}}{N}$$

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ | □ ● ○ ○ ○ ○

If U is a random unitary matrix, then U has eigenvalues

 $\{e^{i\theta_k}\}_{k=1}^N,$

for $0 \leq \theta_1 < \theta_2 < \cdots < \theta_N < 2\pi$.

If U is a random unitary matrix, then U has eigenvalues

 $\{e^{i\theta_k}\}_{k=1}^N,$

for $0 \leq \theta_1 < \theta_2 < \cdots < \theta_N < 2\pi$.

We define the predicted locations to be

 $\{e^{\frac{ik}{N}}\}_{k=1}^{N}.$

・ロト・(四ト・(日下・(日下・(日下)))

If U is a random unitary matrix, then U has eigenvalues

 $\{e^{i\theta_k}\}_{k=1}^N,$

for $0 \le \theta_1 < \theta_2 < \cdots < \theta_N < 2\pi$. We define the predicted locations to be

 $\{e^{\frac{ik}{N}}\}_{k=1}^N.$

concentration of $\mathcal{N}_{[0,\theta]}$

If U is a random unitary matrix, then U has eigenvalues

 $\{e^{i\theta_k}\}_{k=1}^N,$

for $0 \le \theta_1 < \theta_2 < \cdots < \theta_N < 2\pi$. We define the predicted locations to be

 $\{e^{\frac{ik}{N}}\}_{k=1}^{N}.$

concentration of $\mathcal{N}_{[0,\theta]}$

where ν is the uniform distribution on $\mathbb{S}^1 \subseteq \mathbb{C}$.

 \leftrightarrow concentration of $e^{i\theta_k}$ about e^{ik}

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ | □ ● ○ ○ ○ ○

Theorem (Rains) For any $m \ge 1$,

$$\left[\mathbb{U}(N)\right]^{m} \stackrel{e.w.}{\sim} \bigoplus_{0 \leq k < m} \mathbb{U}\left(\left\lceil \frac{N-k}{m} \right\rceil\right).$$

Theorem (Rains) For any $m \ge 1$,

$$\left[\mathbb{U}(N)\right]^{m} \stackrel{e.w.}{\sim} \bigoplus_{0 \leq k < m} \mathbb{U}\left(\left\lceil \frac{N-k}{m} \right\rceil\right).$$

⇒ If $U \sim Haar(\mathbb{U}(N))$ and $\mathcal{N}_{\theta}^{(m)}$ is the number of eigenvalues $e^{i\phi_k}$ of U^m with $0 \le \phi_k \le \theta$, then

$$\mathcal{N}_{\theta}^{(m)} \stackrel{d}{=} \mathcal{N}_{1,\theta} + \cdots + \mathcal{N}_{m,\theta},$$

(日) (日) (日) (日) (日) (日) (日)

where the $\mathcal{N}_{k,\theta}$ are the counting functions for *m* independent random matrices from $\mathbb{U}\left(\left\lceil \frac{N-k}{m} \right\rceil\right)$.

Then $\mathcal{N}_{\theta}^{(m)}$ is also equal in distribution to a sum of independent Bernoullis, and the earlier route applies:

Then $\mathcal{N}_{\theta}^{(m)}$ is also equal in distribution to a sum of independent Bernoullis, and the earlier route applies:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where ν is the uniform distribution on $\mathbb{S}^1 \subseteq \mathbb{C}$, and $m \in \{1, \dots, N\}$.

The eigenvalues of the complex Ginibre ensemble are also a determinantal point process, but on \mathbb{C} .

The eigenvalues of the complex Ginibre ensemble are also a determinantal point process, but on \mathbb{C} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

The eigenvalues of the complex Ginibre ensemble are also a determinantal point process, but on \mathbb{C} .

concentration \checkmark

We define the spiral order
$$\prec$$
 on \mathbb{C} : say $w \prec z$ if

•
$$\lfloor \sqrt{n} |w| \rfloor < \lfloor \sqrt{n} |z| \rfloor;$$

or

• $\lfloor \sqrt{n} |w| \rfloor = \lfloor \sqrt{n} |z| \rfloor$ and arg $w < \arg z$; or

►
$$\lfloor \sqrt{n} |w| \rfloor = \lfloor \sqrt{n} |z| \rfloor$$
, arg $w = \arg z$, and $|w| \ge |z|$.

We apply the concentration of the counting function to the sets:

and define predicted eigenvalue locations:

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

We apply the concentration of the counting function to the sets:

and define predicted eigenvalue locations:

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

$$\checkmark$$
 $\mathbb{E}W_2(\mu_N,\nu) \leq C\left(\frac{\log(N)}{N}\right)^{\frac{1}{4}},$

where ν is the uniform distribution on the circle

Many random matrix ensembles satisfy the following concentration property:

Let $F : S \subseteq \mathbb{M}_N \to \mathbb{R}$ be 1-Lipschitz with respect to $\| \cdot \|_{H.S.}$. Then

$$\mathbb{P}\Big[\big|F(M) - \mathbb{E}F(M)\big| > t\Big] \le Ce^{-cNt^2}$$

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Many random matrix ensembles satisfy the following concentration property:

Let $F : S \subseteq \mathbb{M}_N \to \mathbb{R}$ be 1-Lipschitz with respect to $\| \cdot \|_{H.S.}$. Then $\mathbb{P}[|F(M) - \mathbb{E}F(M)| > t] \leq Ce^{-cNt^2}.$

For a normal matrix, the Hoffman-Wieland inequality implies that $W_1(\mu_M, \mu)$ spectral reference measure of *M* measure is a $\frac{1}{\sqrt{M}}$ -Lipschitz function of *M*.

シック・ビート エレト エレー ロー

GUE

・ロト・日本・日本・日本・日本

GUE

- ► The compact classical groups: $\mathbb{O}(N)$, $\mathbb{SO}(N)$, $\mathbb{U}(N)$, $\mathbb{SU}(N)$, $\mathbb{SP}(2N)$

(日) (日) (日) (日) (日) (日) (日)

GUE

- ► Wigner matrices in which the entries satisfy a quadratic transportation cost inequality with constant ^c/_{√N}.
- ► The compact classical groups: $\mathbb{O}(N)$, $\mathbb{SO}(N)$, $\mathbb{U}(N)$, $\mathbb{SU}(N)$, $\mathbb{SP}(2N)$
- Ensembles with matrix density $\propto e^{-N \operatorname{Tr}(u(M))}$, with $u''(x) \geq c > 0$.

<ロ> < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ensembles with the concentration phenomenon and d.p.p. structure

▲□▶▲□▶▲□▶▲□▶ □ ● ●

Without determinantal structure

Average distance to average without determinantal structure

Define the centered stochastic process

$$X_{\mathsf{f}} := \int \mathsf{f} \mathsf{d} \mu_{\mathsf{M}} - \mathbb{E} \int \mathsf{f} \mathsf{d} \mu_{\mathsf{M}},$$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

indexed by $\{f : ||f||_{BL} \le 1\}$.

Average distance to average without determinantal structure

Define the centered stochastic process

$$X_{f}:=\int f d\mu_{M}-\mathbb{E}\int f d\mu_{M},$$

indexed by $\{f : ||f||_{BL} \le 1\}$.

The concentration phenomenon implies that

$$\mathbb{P}\Big[\big|X_f - X_g\big| \ge t\Big] \le C e^{-\frac{cNt^2}{\|f-g\|_{BL}^2}}$$

that is, $\{X_f\}$ is a sub-Gaussian process with respect to

$$d_N(f,g) := \frac{\|f-g\|_{BL}}{\sqrt{N}}.$$

・ロト・西ト・ヨト ・ヨト・ 日・ うらぐ

Theorem (Dudley)

If a stochastic process $\{X_t\}_{t \in T}$ satisfies the a sub-Gaussian increment condition

$$\mathbb{P}\left[\left|X_{t}-X_{s}\right|>\epsilon\right]\leq Ce^{-\frac{\epsilon^{2}}{2\delta^{2}(s,t)}}\qquad\forall\epsilon>0,$$

then

$$\mathbb{E} \sup_{t \in \mathcal{T}} X_t \leq C \int_0^\infty \sqrt{\log \mathsf{N}(\mathcal{T}, \delta, \epsilon)} d\epsilon,$$

where $N(T, \delta, \epsilon)$ is the ϵ -covering number of T with respect to the distance δ .

Theorem (Dudley)

If a stochastic process $\{X_t\}_{t \in T}$ satisfies the a sub-Gaussian increment condition

$$\mathbb{P}\left[\left|X_{t}-X_{s}\right|>\epsilon\right]\leq Ce^{-\frac{\epsilon^{2}}{2\delta^{2}(s,t)}}\qquad\forall\epsilon>0,$$

then

$$\mathbb{E} \sup_{t \in T} X_t \leq C \int_0^\infty \sqrt{\log N(T, \delta, \epsilon)} d\epsilon,$$

where $N(T, \delta, \epsilon)$ is the ϵ -covering number of T with respect to the distance δ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

For us,
$$T = \{f : \|f_{BL} \le 1\}$$
 and $\delta(f, g) = \frac{\|f - g\|_{BL}}{\sqrt{N}}$.

So: what is
$$N\left(T, \frac{\|\cdot\|_{BL}}{\sqrt{N}}, \epsilon\right)$$
?

So: what is
$$N\left(T, \frac{\|\cdot\|_{BL}}{\sqrt{N}}, \epsilon\right)$$
?
Bad news: $N\left(T, \frac{\|\cdot\|_{BL}}{\sqrt{N}}, \epsilon\right) = \infty$.

So: what is
$$N\left(T, \frac{\|\cdot\|_{BL}}{\sqrt{N}}, \epsilon\right)$$
?

Bad news:
$$N\left(T, \frac{\|\cdot\|_{BL}}{\sqrt{N}}, \epsilon\right) = \infty.$$

This is not that big a deal:

approximating Lipschitz functions by piecewise affine functions and using volumetric estimates in the resulting finite-dimensional normed space of approximating functions does the job.

Almost sure rates without *a priori* concentration of distance

Concentration in an ensemble of normal matrices of individual eigenvalues

Good estimates for $\mathbb{E} W_p(\mu_M, \mu)$ from d.p.p. structure

The best of our worlds: $\mathbb{U}(N)$ and friends, GUE

Thank you.

