The spectra of powers of random unitary matrices

Elizabeth Meckes
joint with Mark Meckes

Case Western Reserve University

March 11, 2013

The empirical spectral measure

The empirical spectral measure

Let U be distributed according to uniform (Haar) measure on the group $\mathbb{U}(N)$ of $N \times N$ unitary matrices.

The empirical spectral measure

Let U be distributed according to uniform (Haar) measure on the group $\mathbb{U}(N)$ of $N \times N$ unitary matrices.
Fix $m \in\{1, \ldots, N\}$.
Then U^{m} has (random) eigenvalues $\left\{e^{i \theta_{j}}\right\}_{j=1}^{N}$.

The empirical spectral measure

Let U be distributed according to uniform (Haar) measure on the group $\mathbb{U}(N)$ of $N \times N$ unitary matrices.
Fix $m \in\{1, \ldots, N\}$.
Then U^{m} has (random) eigenvalues $\left\{e^{i \theta_{j}}\right\}_{j=1}^{N}$.
We consider the empirical spectral measure of U^{m} :

$$
\mu_{m, N}:=\frac{1}{N} \sum_{j=1}^{N} \delta_{e^{i \theta_{j}}}
$$

The eigenvalues of U^{m} for $m=1,5,20,45,80$, for U a realization of a random 80×80 unitary matrix.

Main results

Main results

Theorem (E.M./M. Meckes)
Let ν denote the uniform probability measure on the circle and $W_{p}(\mu, \nu):=\inf \left\{\begin{array}{l|l}\left(\int|x-y|^{p} d \pi(x, y)\right)^{\frac{1}{p}} & \begin{array}{l}(\boldsymbol{A} \times \mathbb{C})=\mu(\boldsymbol{A}) \\ \pi(\mathbb{C} \times \boldsymbol{A})=\nu(\boldsymbol{A})\end{array}\end{array}\right\}$.

Main results

Theorem (E.M./M. Meckes)
Let ν denote the uniform probability measure on the circle and $W_{p}(\mu, \nu):=\inf \left\{\begin{array}{l|l}\left(\int|x-y|^{p} d \pi(x, y)\right)^{\frac{1}{p}} & \begin{array}{l}\pi(\boldsymbol{A} \times \mathbb{C})=\mu(\boldsymbol{A}) \\ \pi(\mathbb{C} \times \boldsymbol{A})=\nu(\boldsymbol{A})\end{array}\end{array}\right\}$.
Then

- $\mathbb{E}\left[W_{p}\left(\mu_{m, N}, \nu\right)\right] \leq \frac{\operatorname{Cp} \sqrt{m\left[\log \left(\frac{N}{m}\right)+1\right]}}{N}$.

Main results

Theorem (E.M./M. Meckes)
Let ν denote the uniform probability measure on the circle and $W_{p}(\mu, \nu):=\inf \left\{\begin{array}{l|l}\left(\int|x-y|^{p} d \pi(x, y)\right)^{\frac{1}{\rho}} & \begin{array}{l}\pi(\boldsymbol{A} \times \mathbb{C})=\mu(A) \\ \pi(\mathbb{C} \times A)=\nu(A)\end{array}\end{array}\right\}$.
Then

- $\mathbb{E}\left[W_{p}\left(\mu_{m, N}, \nu\right)\right] \leq \frac{\operatorname{Cp} \sqrt{m\left[\log \left(\frac{N}{m}\right)+1\right]}}{N}$.
- For $1 \leq p \leq 2$,
$\mathbb{P}\left[W_{p}\left(\mu_{m, N}, \nu\right) \geq \frac{C \sqrt{m\left[\log \left(\frac{N}{m}\right)+1\right]}}{N}+t\right] \leq \exp \left[-\frac{N^{2} t^{2}}{24 m}\right]$.
- For $p>2$,
$\mathbb{P}\left[W_{p}\left(\mu_{m, N}, \nu\right) \geq \frac{C p \sqrt{m\left[\log \left(\frac{N}{m}\right)+1\right]}}{N}+t\right] \leq \exp \left[-\frac{N^{1+\frac{2}{2} t^{2}}}{24 m}\right]$.

Almost sure convergence

Corollary
For each N, let U_{N} be distributed according to uniform measure on $\mathbb{U}(N)$ and let $m_{N} \in\{1, \ldots, N\}$. There is a C such that, with probability 1 ,

$$
W_{p}\left(\mu_{m_{N}, N}, \nu\right) \leq \frac{C p \sqrt{m_{N} \log (N)}}{N^{\frac{1}{2}+\frac{1}{\max (2, p)}}}
$$

eventually.

A miraculous representation of the eigenvalue counting function

A miraculous representation of the eigenvalue counting function

Fact: The set $\left\{e^{i \theta_{j}}\right\}_{j=1}^{N}$ of eigenvalues of U (uniform in $\left.\mathbb{U}(N)\right)$ is a determinantal point process.

A miraculous representation of the eigenvalue counting function

Fact: The set $\left\{e^{i \theta_{j}}\right\}_{j=1}^{N}$ of eigenvalues of U (uniform in $\mathbb{U}(N)$) is a determinantal point process.

Theorem (Hough/Krishnapur/Peres/Virág 2006) Let \mathcal{X} be a determinantal point process in \wedge satisfying some niceness conditions. For $D \subseteq \Lambda$, let \mathcal{N}_{D} be the number of points of \mathcal{X} in D. Then

$$
\mathcal{N}_{D} \stackrel{d}{=} \sum_{k} \xi_{k},
$$

where $\left\{\xi_{k}\right\}$ are independent Bernoulli random variables with means given explicitly in terms of the kernel of \mathcal{X}.

A miraculous representation of the eigenvalue counting function

That is, if \mathcal{N}_{θ} is the number of eigenangles of U between 0 and θ, then

$$
\mathcal{N}_{\theta} \stackrel{d}{=} \sum_{j=1}^{N} \xi_{j}
$$

for a collection $\left\{\xi_{j}\right\}_{j=1}^{N}$ of independent Bernoulli random variables.

A miraculous representation of the eigenvalue counting function

A miraculous representation of the eigenvalue counting function

Theorem (Rains 2003)
Let $m \leq N$ be fixed. Then

$$
[\mathbb{U}(N)]^{m} \stackrel{\text { e.v.d. }}{=} \bigoplus_{0 \leq j<m} \mathbb{U}\left(\left\lceil\frac{N-j}{m}\right\rceil\right),
$$

where $\stackrel{\text { e.v.d. }}{=}$ denotes equality of eigenvalue distributions.

A miraculous representation of the eigenvalue counting function

Theorem (Rains 2003)
Let $m \leq N$ be fixed. Then

$$
[\mathbb{U}(N)]^{m} \stackrel{e . v . d .}{=} \bigoplus_{0 \leq j<m} \mathbb{U}\left(\left\lceil\frac{N-j}{m}\right\rceil\right),
$$

where $\stackrel{\text { e.v.d. }}{=}$ denotes equality of eigenvalue distributions.
So: if $\mathcal{N}_{m, N}(\theta)$ denotes the number of eigenangles of U^{m} in $[0, \theta)$, then

$$
\mathcal{N}_{m, N}(\theta) \stackrel{d}{=} \sum_{j=1}^{N} \xi_{j},
$$

for $\left\{\xi_{j}\right\}_{j=1}^{N}$ independent Bernoulli random variables.

Consequences of the miracle

Consequences of the miracle

- From Bernstein's inequality and the representation of $\mathcal{N}_{m, N}(\theta)$ as $\sum_{j=1}^{N} \xi_{j}$,

$$
\mathbb{P}\left[\left|\mathcal{N}_{m, N}(\theta)-\mathbb{E} \mathcal{N}_{m, N}(\theta)\right|>t\right] \leq 2 \exp \left[-\min \left\{\frac{t^{2}}{4 \sigma^{2}}, \frac{t}{2}\right\}\right]
$$

where $\sigma^{2}=\operatorname{Var} \mathcal{N}_{m, N}(\theta)$.

Consequences of the miracle

- From Bernstein's inequality and the representation of $\mathcal{N}_{m, N}(\theta)$ as $\sum_{j=1}^{N} \xi_{j}$,

$$
\mathbb{P}\left[\left|\mathcal{N}_{m, N}(\theta)-\mathbb{E} \mathcal{N}_{m, N}(\theta)\right|>t\right] \leq 2 \exp \left[-\min \left\{\frac{t^{2}}{4 \sigma^{2}}, \frac{t}{2}\right\}\right]
$$

where $\sigma^{2}=\operatorname{Var} \mathcal{N}_{m, N}(\theta)$.

- $\mathbb{E} \mathcal{N}_{m, N}(\theta)=\frac{N \theta}{2 \pi}$ (by rotation invariance).

Consequences of the miracle

- From Bernstein's inequality and the representation of $\mathcal{N}_{m, N}(\theta)$ as $\sum_{j=1}^{N} \xi_{j}$,

$$
\mathbb{P}\left[\left|\mathcal{N}_{m, N}(\theta)-\mathbb{E} \mathcal{N}_{m, N}(\theta)\right|>t\right] \leq 2 \exp \left[-\min \left\{\frac{t^{2}}{4 \sigma^{2}}, \frac{t}{2}\right\}\right]
$$

where $\sigma^{2}=\operatorname{Var} \mathcal{N}_{m, N}(\theta)$.

- $\mathbb{E} \mathcal{N}_{m, N}(\theta)=\frac{N \theta}{2 \pi}$ (by rotation invariance).
- $\operatorname{Var}\left[\mathcal{N}_{1, N}(\theta)\right] \leq \log (N)+1$ (e.g., via explicit computation with the kernel of the determinantal point process), and so
$\operatorname{Var}\left(\mathcal{N}_{m, N}(\theta)\right)=\sum_{0 \leq j<m} \operatorname{Var}\left(\mathcal{N}_{1,\left\lceil\frac{N-j}{m}\right\rceil}(\theta)\right) \leq m\left(\log \left(\frac{N}{m}\right)+1\right)$.

Bounding $\mathbb{E} W_{p}\left(\mu_{m, N}, \nu\right)$

Bounding $\mathbb{E} W_{p}\left(\mu_{m, N}, \nu\right)$

The previous slide leads easily to the estimate

$$
\mathbb{P}\left[\left|\theta_{j}-\frac{2 \pi j}{N}\right|>\frac{4 \pi t}{N}\right] \leq 4 \exp \left[-\min \left\{\frac{t^{2}}{m\left(\log \left(\frac{N}{m}\right)+1\right)}, t\right\}\right]
$$

for each $j \in\{1, \ldots, N\}$.

Bounding $\mathbb{E} W_{p}\left(\mu_{m, N}, \nu\right)$

The previous slide leads easily to the estimate
$\mathbb{P}\left[\left|\theta_{j}-\frac{2 \pi j}{N}\right|>\frac{4 \pi t}{N}\right] \leq 4 \exp \left[-\min \left\{\frac{t^{2}}{m\left(\log \left(\frac{N}{m}\right)+1\right)}, t\right\}\right]$,
for each $j \in\{1, \ldots, N\}$.
If $\nu_{N}:=\frac{1}{N} \sum_{j=1}^{N} \delta_{\exp \left(i \frac{2 \pi j}{N}\right)}$, then $W_{p}\left(\nu_{N}, \nu\right) \leq \frac{\pi}{N}$ and

$$
\mathbb{E} W_{p}^{p}\left(\mu_{m, N}, \nu_{N}\right) \leq \frac{1}{N} \sum_{j=1}^{N} \mathbb{E}\left|\theta_{j}-\frac{2 \pi j}{N}\right|^{p}
$$

Bounding $\mathbb{E} W_{p}\left(\mu_{m, N}, \nu\right)$

The previous slide leads easily to the estimate
$\mathbb{P}\left[\left|\theta_{j}-\frac{2 \pi j}{N}\right|>\frac{4 \pi t}{N}\right] \leq 4 \exp \left[-\min \left\{\frac{t^{2}}{m\left(\log \left(\frac{N}{m}\right)+1\right)}, t\right\}\right]$,
for each $j \in\{1, \ldots, N\}$.
If $\nu_{N}:=\frac{1}{N} \sum_{j=1}^{N} \delta_{\exp \left(i \frac{2 \pi j}{N}\right)}$, then $W_{p}\left(\nu_{N}, \nu\right) \leq \frac{\pi}{N}$ and

$$
\begin{aligned}
\mathbb{E} W_{p}^{p}\left(\mu_{m, N}, \nu_{N}\right) & \leq \frac{1}{N} \sum_{j=1}^{N} \mathbb{E}\left|\theta_{j}-\frac{2 \pi j}{N}\right|^{p} \\
& \leq 8 \Gamma(p+1)\left(\frac{4 \pi \sqrt{m\left[\log \left(\frac{N}{m}\right)+1\right]}}{N}\right)^{p}
\end{aligned}
$$

Concentration of $W_{p}\left(\mu_{m, N}, \nu\right)$

Concentration of $W_{p}\left(\mu_{m, N}, \nu\right)$

The Idea: Consider the function $F_{p}(U)=W_{p}\left(\mu_{U^{m}, ~}, \nu\right)$, where $\mu_{U^{m}}$ is the empirical spectral measure of U^{m}.

Concentration of $W_{p}\left(\mu_{m, N}, \nu\right)$

The Idea: Consider the function $F_{p}(U)=W_{p}\left(\mu_{U^{m}}, \nu\right)$, where $\mu_{U^{m}}$ is the empirical spectral measure of U^{m}.

- By Rains' theorem, it is distributionally the same as

$$
F_{p}\left(U_{1}, \ldots, U_{m}\right)=\left(\frac{1}{m} \sum_{j=1}^{m} \mu_{U_{j}}, \nu\right)
$$

Concentration of $W_{p}\left(\mu_{m, N}, \nu\right)$

The Idea: Consider the function $F_{p}(U)=W_{p}\left(\mu_{U^{m}, ~}, \nu\right)$, where $\mu_{U^{m}}$ is the empirical spectral measure of U^{m}.

- By Rains' theorem, it is distributionally the same as

$$
F_{p}\left(U_{1}, \ldots, U_{m}\right)=\left(\frac{1}{m} \sum_{j=1}^{m} \mu_{U_{j}}, \nu\right)
$$

- $F_{p}\left(U_{1}, \ldots, U_{m}\right)$ is Lipschitz (w.r.t. the L_{2} sum of the Euclidean metrics) with Lipschitz constant $N^{-\frac{1}{\max (p, 2)}}$.

Concentration of $W_{p}\left(\mu_{m, N}, \nu\right)$

The Idea: Consider the function $F_{p}(U)=W_{p}\left(\mu_{U^{m}, ~}, \nu\right)$, where $\mu_{U^{m}}$ is the empirical spectral measure of U^{m}.

- By Rains' theorem, it is distributionally the same as

$$
F_{p}\left(U_{1}, \ldots, U_{m}\right)=\left(\frac{1}{m} \sum_{j=1}^{m} \mu_{U_{j}}, \nu\right)
$$

- $F_{p}\left(U_{1}, \ldots, U_{m}\right)$ is Lipschitz (w.r.t. the L_{2} sum of the Euclidean metrics) with Lipschitz constant $N^{-\frac{1}{\max (p, 2)}}$.
- If we had a general concentration phenomenon on $\bigoplus_{0 \leq j<m} \mathbb{U}\left(\left\lceil\frac{N-j}{m}\right\rceil\right)$, concentration of $W_{p}\left(\mu_{U^{m}}, \nu\right)$ would follow.

The sharp LSI on $\mathbb{U}(N)$

The sharp LSI on $\mathbb{U}(N)$

Lemma
If

- θ is uniform in $\left[0, \frac{2 \pi}{N}\right]$
- V is uniform in $\mathbb{S U}(N)$,
- θ and V are independent,
then $e^{i \theta} V$ is distributed uniformly in $\mathbb{U}(N)$.

The sharp LSI on $\mathbb{U}(N)$

Lemma

If

- θ is uniform in $\left[0, \frac{2 \pi}{N}\right]$
- V is uniform in $\mathbb{S U}(N)$,
- θ and V are independent,
then $e^{i \theta} V$ is distributed uniformly in $\mathbb{U}(N)$.
Proof.
Let K be uniform in $\{1, \ldots, N\}, X$ uniform in $(0,1)$ and V uniform in $\operatorname{SU}(N)$.

The sharp LSI on $\mathbb{U}(N)$

Lemma

If

- θ is uniform in $\left[0, \frac{2 \pi}{N}\right]$
- V is uniform in $\mathbb{S U}(N)$,
- θ and V are independent,
then $e^{i \theta} V$ is distributed uniformly in $\mathbb{U}(N)$.
Proof.
Let K be uniform in $\{1, \ldots, N\}, X$ uniform in $(0,1)$ and V uniform in $\mathbb{S U}(N)$. Look at

$$
e^{\frac{2 \pi i x}{N}} e^{\frac{2 \pi i k}{N}} V
$$

The sharp LSI on $\mathbb{U}(N)$

The sharp LSI on $\mathbb{U}(N)$

Facts 1 \& 2: Both $\left[0, \frac{\pi \sqrt{2}}{\sqrt{N}}\right]$ and $\mathbb{S U}(N)$ satisfy log-Sobolev inequalities with constant $\frac{2}{N}$.

The sharp LSI on $\mathbb{U}(N)$

Facts 1 \& 2: Both $\left[0, \frac{\pi \sqrt{2}}{\sqrt{N}}\right]$ and $\mathbb{S U}(N)$ satisfy log-Sobolev inequalities with constant $\frac{2}{N}$.
Fact 3: Log-Sobolev inequalities tensorize.

The sharp LSI on $\mathbb{U}(N)$

Facts 1 \& 2: Both $\left[0, \frac{\pi \sqrt{2}}{\sqrt{N}}\right]$ and $\mathbb{S U}(N)$ satisfy log-Sobolev inequalities with constant $\frac{2}{N}$.
Fact 3: Log-Sobolev inequalities tensorize.
$\Longrightarrow\left[0, \frac{\pi \sqrt{2}}{\sqrt{N}}\right] \times \mathbb{S U}(N)$ satisfies an LSI with constant $\frac{2}{N}$.

The sharp LSI on $\mathbb{U}(N)$

Facts 1 \& 2: Both $\left[0, \frac{\pi \sqrt{2}}{\sqrt{N}}\right]$ and $\operatorname{SU}(N)$ satisfy log-Sobolev inequalities with constant $\frac{2}{N}$.
Fact 3: Log-Sobolev inequalities tensorize.
$\Longrightarrow\left[0, \frac{\pi \sqrt{2}}{\sqrt{N}}\right] \times \mathbb{S U}(N)$ satisfies an LSI with constant $\frac{2}{N}$.
Fact 4: The function

$$
\begin{aligned}
F:\left[0, \frac{\pi \sqrt{2}}{\sqrt{N}}\right] \times \mathbb{S U}(N) & \rightarrow \mathbb{U}(N) \\
(t, V) & \mapsto e^{\frac{\sqrt{2} t}{\sqrt{N}}} V
\end{aligned}
$$

is $\sqrt{3}$-Lipschitz and pushes forward the product of uniform measures on $\left[0, \frac{\pi \sqrt{2}}{\sqrt{N}}\right]$ and $\mathbb{S U}(N)$ to uniform measure on $\mathbb{U}(N)$.

The sharp LSI on $\mathbb{U}(N)$

$\Longrightarrow \mathbb{U}(N)$ satisifes a log-Sobolev inequality with contant $\frac{6}{N}$.

The sharp LSI on $\mathbb{U}(N)$

$\Longrightarrow \mathbb{U}(N)$ satisifes a log-Sobolev inequality with contant $\frac{6}{N}$.
One more application of tensorization gives that $\bigoplus_{0 \leq j<m} \mathbb{U}\left(\left\lceil\frac{N-j}{m}\right\rceil\right)$ satisfies a log-Sobolev inequality with constant $6\left\lceil\frac{N}{m}\right\rceil$.

The sharp LSI on $\mathbb{U}(N)$

$\Longrightarrow \mathbb{U}(N)$ satisifes a log-Sobolev inequality with contant $\frac{6}{N}$.
One more application of tensorization gives that
$\bigoplus_{0 \leq j<m} \mathbb{U}\left(\left\lceil\frac{N-j}{m}\right\rceil\right)$ satisfies a log-Sobolev inequality with constant $6\left\lceil\frac{N}{m}\right\rceil$.

Via the Herbst argument, this leads to:

$$
\mathbb{P}\left[F\left(U_{1}, \ldots, U_{m}\right) \geq \mathbb{E} F\left(U_{1}, \ldots, U_{m}\right)+t\right] \leq \exp \left[-\frac{N t^{2}}{12 L^{2}}\right]
$$

where F is L-Lipschitz.

