Name: _____

$\begin{array}{c} \text{Math 224 Exam 5} \\ \text{April 17, 2015} \end{array}$

1. (a) Solve the initial value problem $\frac{d^2y}{dt^2} + 4y = 3\cos 2t$, y(0) = y'(0) = 0.

(b) Describe the long-term behavior of the solution.

2. Consider the system

$$\frac{dx}{dt} = y,$$
$$\frac{dy}{dt} = -y - \sin x.$$

(a) Find the nullclines and equilibria.

(b) Determine the types of the equilibria.*Hint:* There are two sets of equilibria of different types.

(c) Sketch the phase portrait for the system, including at least three equilibria.

3. Consider the system

$$\frac{dx}{dt} = 2xy,$$
$$\frac{dy}{dt} = -y^2.$$

(a) Show that the system is Hamiltonian.

(b) Find a Hamiltonian function H(x,y) for the system.

4. Solve the initial value problem $\frac{dy}{dt} + 7y = u_2(t), y(0) = 3.$

Formulae

$\mathcal{L}[y] = \int_0^\infty$	$y(t)e^{-st} dt$
$\mathcal{L}[y'] = s\mathcal{L}[y] - y(0)$	
$\mathcal{L}[y''] = s^2 \mathcal{L}[y] - sy(0) - y'(0)$	
y(t)	$Y(s) = \mathcal{L}[y]$
1	$\frac{1}{s}$
e^{at}	$\frac{1}{s-a}$
$\sin \omega t$	$\frac{\omega}{s^2+\omega^2}$
$\cos \omega t$	$\frac{s}{s^2+\omega^2}$
$u_a(t)$	$\frac{e^{-sa}}{s}$
$u_a(t)f(t-a)$	$e^{-as}F(s)$
$e^{at}f(t)$	F(s-a)
tf(t)	$-\frac{dY}{ds}$