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The classical compact matrix groups

I O (n): U ∈ Mn(R), UUT = In

I SO (n): U ∈ O (n), det(U) = 1

I U (n): U ∈ Mn(C), UU∗ = In

I SU (n): U ∈ U (n), det(U) = 1

I Sp (2n): U ∈ Mn(H), UU∗ = In

I Alternatively: U ∈ U (2n), UJU∗ = J, with J =

[
0 In
−In 0

]
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Random matrices

Why?

I Curiosity: We understand the matrix groups better if we
know what a random element is like.

I Randomized algorithms: Sometimes any random thing will
do the job (but it’s still hard to write a deterministic
algorithm!)
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Random matrices

Okay, how?

Haar measure: On each group, there
is a unique translation-invariant
probability measure.

U is a Haar random matrix on O (n) iff
for S ⊆ O (n) and any deterministic
A ∈ O (n):

P[U ∈ S] = P[U ∈ A ·S] = P[U ∈ S ·A]

⇐⇒

U d
= AU d

= UA
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Random matrices

But how, really?

I Fill an empty n × n matrix with i.i.d. Gaussians, and
perform the Gram-Schmidt process.

I Fill the first column of a matrix with a vector chosen
uniformly from the sphere Sn−1 ⊆ Rn. Then fill the second
column with a vector chosen uniformly in the orthogonal
complement of the first. And so on.
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Eigenvalues

Matrices from the classical compact groups have eigenvalues
which lie on the unit circle in the complex plane.

They are distinct with probability one, but there’s more:

E. Rains

The eigenvalues of a
100× 100 random unitary matrix

100 i.i.d. uniform random
points
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The empirical spectral measure

Let λ1, . . . , λn be the eigenvalues of a random matrix U.

The empirical spectral measure µn is the probability measure

µn =
1
n

n∑
j=1

δλj .

The empirical spectral measure is a handy way to encode the
set of eigenvalues as one object to study.
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Limiting eigenvalue densities via the empirical spectral
measure

The semi-circle law: The empirical spectral measure of a
Wigner random matrix converges weakly almost surely to the
semi-circular distribution 1

2π

√
4− x21[−2,2](x)dx .

Roughly, if A is an n × n Wigner random matrix and n is large,
then if (α, β) ⊆ [−2,2],

#{eigenvalues of A in (α, β)}
n

≈ 1
2π

∫ β

α

√
4− x2dx .
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Distances between probability measures

Measuring the distance between a measure supported on n
points on the circle and the uniform measure on the circle is a
way to quantify how regularly the points are spaced.

The L1 Kantorivich distance is one of many metrics on the set
of probability measures:

For probabilities µ and ν on a space X ,

W1(µ, ν) = inf
π(A×X)=µ(A)
π(X×A)=ν(A)

∫
|x − y |dπ(x , y)

= sup
|f |L≤1

∣∣∣∣∫ f (x)dµ(x)−
∫

f (x)dν(x)
∣∣∣∣ .
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Eigenvalue repulsion quantified

Source of points Distance to uniform

The picket fence
1
n

Eigenvalues

√
log(n)
n

i.i.d. uniform
1√
n
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Distribution of the entries

Heuristically, a Haar random matrix is kind of like a matrix
of i.i.d. Gaussians:

I All the entries have the same individual distributions, and
all are roughly Gaussian (mean 0 and variance 1

n in O (n))
when n is large.

I The entries aren’t too dependent.
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Theorem (T. Jiang)
Let X be an n × n matrix of i.i.d. Gaussians, and let U be the
result of performing the Gram-Schmidt process on X, so that U
is a Haar random orthogonal matrix.

If

εn(m) = max
1≤i≤n
1≤j≤m

∣∣√nuij − xij
∣∣,

then εn(mn)
P−−−→

n→∞
0 if and only if mn = o

(
n

log(n)

)
.

Bottom line: in this rather weak sense, a random orthogonal
matrix is like a matrix of i.i.d. Gaussians, as long as you only
consider the first o

(
n

log(n)

)
columns.
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Theorem (Chatterjee–M.)
Let U ∈ O (n) be a random orthogonal matrix, let
A1, . . . ,Ak ∈ O (n) be orthonormal (w.r.t. 〈A,B〉 = Tr(ABT )), and
let

X =
(

Tr(A1U), . . . ,Tr(AkU)
)
.

Let Z = (Z1, . . . ,Zk ) a vector of i.i.d. standard Gaussians.
Then

W1(X ,Z ) ≤
√

2k
n − 1

.

Bottom line: In this stronger sense, a random matrix is like a
matrix of i.i.d. Gaussians at rank o(n).
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Concentration of measure

The idea: If you’re lucky, “typical” is the same as
“average” (averages are easier!).

Theorem
Let Gn be one of SO (n) ,SO− (n) ,SU (n) ,U (n) ,Sp (2n), and
let F : Gn → R be 1-Lipschitz. If U is a Haar random matrix in
Gn, then

P
[∣∣F (U)− EF (U)

∣∣ > t
]
≤ Ce−cnt2

.
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Concentration of the empirical spectral measure

Consider the function F : Gn → R defined by

F (U) = W1(µU , ν).

It follows from the Hoffman-Wieland inequality that F is
1√
n -Lipschitz:

|W1(µU , ν)−W1(µV , ν)| ≤W1(µU , µV )

≤ inf
σ∈Sn

1
n

n∑
j=1

|λj(U)− λσ(j)(V )|

≤ 1√
n
‖U − V‖H.S..
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Concentration of the empirical spectral measure

By concentration of measure, this means

P
[∣∣W1(µn, ν)− EW1(µn, ν)

∣∣ > t
]
≤ Ce−cn2t2

.

=⇒W1(µn, ν) is typically within about 1
n of its mean.
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The Johnson–Lindenstrauss Lemma

If you have n high-dimensional data points and project
them onto a random subspace of dimension ∼ log(n), the
pairwise distances between the points is approximately
preserved.

Practical conclusion: If your problem is about the metric
structure of the data (finding the closest pair, most separated
pair, minimum spanning tree of a graph,etc.), there is no need
to work in the high-dimensional space that the data naturally
live in.
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The Johnson–Lindenstrauss Lemma

Lemma (J–L)
Let {xj}nj=1 ⊆ Rd , let U be a random d × d orthogonal and let P
be the k × d matrix which is the first k rows of U; that is,
P is a projection of Rd onto a random k-dimensional subspace.

If k = a log(n)
ε2

, then with probability at least 1− C
n

ac
9 −2 (with C, c

coming from the concentration inequality),

(1− ε)‖xi − xj‖2 ≤
(

d
k

)
‖Pxi − Pxj‖2 ≤ (1 + ε)‖xi − xj‖2

for all i , j ∈ {1, . . . ,n}.
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Application: Finding the closest point

Consider the following problem: You are given a reference set
Xof n points in Rd . Now given a query point q ∈ Rd , find the
closest point in X to q.

P. Indyk

dimension = number of pixels

The naı̈ve approach – calculate each distance and keep track
of the best so far – runs in O(nd) steps.
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Application: Finding the closest point

Relaxing the problem:

If you project onto a random subspace
of dimension about log(n), distances
are approximately preserved.

This means that while the algorithm
might not return the absolute closest
point, the point that it returns will be
almost as close to q as the true
closest point is.

P. Indyk
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More carefully, suppose that P is one of the good random
projections so that

(1− ε)‖q − xi‖2 ≤
(

d
k

)
‖Pq − Pxi‖2 ≤ (1 + ε)‖q − xi‖2

for each i .

If Pxi is the closest point to Pq (and so our randomized
algorithm returns xi ), but the true closest point to q is xj , then

‖q − xi‖ ≤
√

1 + ε

1− ε
‖q − xj‖;

that is, the wrong answer isn’t that wrong.

And after projecting, the naı̈ve approach runs in O(n log(n))
steps, instead of O(n2).
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Other neat stuff: powers of random matrices

Theorem (Rains 1997)
Let U ∈ U (n) be a random unitary matrix, and let m ≥ n. Then
the eigenvalues of Um are distributed exactly as n i.i.d. uniform
points on S1.

Theorem (Rains 2003)
Let m ≤ N be fixed. Then

[U (N)]m
e.v .d .
=

⊕
0≤j<m

U
(⌈

N − j
m

⌉)
,

where e.v .d .
= denotes equality of eigenvalue distributions.
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Other neat stuff: powers of random matrices

The eigenvalues of Um for m = 1,5,20,45,80, for U a
realization of a random 80× 80 unitary matrix.



Other neat stuff: self-similarity

I Let Nθ be the number of eigenvalue angles of an n × n
random unitary matrix in [−θ, θ) ⊆ [−π, π).

I Take a random nm × nm unitary matrix, and zoom in on[
− π

m ,
π
m

)
: let N (m)

θ be the number of eigenvalue angles in[
− θ

m ,
θ
m

)
.

Theorem (E.M.–M. Meckes, 2016)
For n,m ≥ 1,

dTV (Nθ,N
(m)
θ ) ≤ 2

√
mnθ2

3π
.
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Other neat stuff: the Riemann zeta function

Q: What to the eigenvalues of a random unitary matrix look
like?

A: Like the zeroes of the Riemann zeta function.
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Thank you.


