
The Random Matrix Theory of the
Classical Compact Groups

Elizabeth Meckes





Image by Swallowtail Garden Seeds



To Mark



Contents

Preface page 7

1 Haar measure on the classical compact matrix groups 11
1.1 The classical compact matrix groups 11
1.2 Haar measure 17
1.3 Lie group structure and character theory 28

2 Distribution of the entries 41
2.1 Introduction 41
2.2 The density of a principal submatrix 47
2.3 How much is a Haar matrix like a Gaussian matrix? 52
2.4 Arbitrary projections 63

3 Eigenvalue distributions: exact formulas 70
3.1 The Weyl integration formula 70
3.2 Determinantal point processes 80
3.3 Matrix moments 89
3.4 Patterns in eigenvalues: powers of random matrices 94

4 Eigenvalue distributions: asymptotics 99
4.1 The eigenvalue counting function 99
4.2 The empirical spectral measure and linear eigenvalue

statistics 114
4.3 Patterns in eigenvalues: self-similarity 121
4.4 Large deviations for the empirical spectral measure 125

5 Concentration of measure 138
5.1 The concentration of measure phenomenon 138
5.2 Logarithmic Sobolev inequalities and concentration 140
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Preface

This book grew out of lecture notes from a mini-course I gave at the 2014
Women and Mathematics program at the Institute for Advanced Study. When
asked to provide background reading for the participants, I found myself at
a bit of a loss; while there are many excellent books which give some treat-
ment of Haar distributed random matrices, there was no one source that gave a
broad, and broadly accessible, introduction to the subject in its own right. My
goal has been to fill this gap: to give an introduction to the theory of random or-
thogonal, unitary, and symplectic matrices which approaches the subject from
many angles, includes the most important results that anyone looking to learn
about the subject should know, and tells a coherent story that allows the beauty
of this many-faceted subject to shine through.

The book begins with a very brief introduction to the orthogonal, unitary,
and symplectic groups; just enough to get started talking about Haar measure.
The second section includes six different constructions of Haar measure on
the classical groups; the chapter also contains some further information on the
groups, including some basic aspects of their structure as Lie groups, identifi-
cation of the Lie algebras, an introduction to representation theory, and discus-
sion of the characters.

Chapter two is about the joint distribution of the entries of a Haar-distributed
random matrix. The fact that individual entries are approximately Gaussian is
classical and goes back to the late 19th century. This chapter includes modern
results on the joint distribution of the entries in various senses: total variation
approximation of principal submatrices by Gaussian matrices, in-probability
approximation of (much larger) submatrices by Gaussian matrices, and a treat-
ment of arbitrary projections of Haar measure via Stein’s method.

Chapters three and four deal with the eigenvalues. Chapter three is all about
exact formulas: the Weyl integration formulas, the structure of the eigenvalue
processes as determinantal point processes with explicit kernels, exact formu-
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8 Preface

las due to Diaconis and Shahshahani for the matrix moments, and an interesting
decomposition (due to Eric Rains) of the distribution of eigenvalues of powers
of random matrices.

Chapter four deals with asymptotics for the eigenvalues of large matrices:
the sine kernel microscopic scaling limit, limit theorems for the empirical spec-
tral measures and linear eigenvalue statistics, large deviations for the empirical
spectral measures, and an interesting self-similarity property of the eigenvalue
distribution.

Chapters five and six are where this project began: concentration of measure
on the classical compact groups, with applications in geometry. Chapter five
introduces the concept of concentration of measure, the connection with log-
Sobolev inequalities, and derivations of optimal (at least up to constants) log-
Sobolev constants. The final section contains concentration inequalities for the
empirical spectral measures of random unitary matrices.

Chapter six has some particularly impressive applications of measure con-
centration on the classical groups to high-dimensional geometry. First, a proof
of the celebrated Johnson–Lindenstrauss lemma via concentration of measure
on the orthogonal group, with a (very brief) discussion of the role of the lemma
in randomized algorithms. The second section is devoted to a proof of Dvoret-
zky’s theorem, via concentration of measure on the unitary group. The final
section gives the proof of a “measure-theoretic” Dvoretzky theorem, show-
ing that subject to some mild constraints, most marginals of high-dimensional
probability measures are close to Gaussian.

Finally, chapter seven gives a taste of the intriguing connection between
eigenvalues of random unitary matrices and zeros of the Riemann zeta func-
tion. There is a section on Montgomery’s theorem and conjecture on pair cor-
relations and one on the results of Keating and Snaith on the characteristic
polynomial of a random unitary matrix, which led them to exciting new con-
jectures on the zeta side. Some numerical evidence (and striking pictures) are
presented.

Haar-distributed random matrices appear and play important roles in a wide
spectrum of subfields of mathematics, physics, and statistics, and it would
never have been possible to mention them all. I have used the end of chapter
notes in part to give pointers to some interesting topics and connections that I
have not included, and doubtless there are many more that I did not mention
at all. I have tried to make the book accessible to a reader with an undergradu-
ate background in mathematics generally, with a bit more in probability (e.g.,
comfort with measure theory would be good). But because the random matrix
theory of the classical compact groups touches on so many diverse areas of
mathematics, it has been my assumption in writing this book that most readers
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will not be familiar with all of the background which comes up. I have done my
best to give accessible, bottom-line introductions to the areas I thought were
most likely to be unfamiliar, but there are no doubt places where an unfamiliar
(or more likely, vaguely familiar, but without enough associations for comfort)
phrase will suddenly appear. In these cases, it seems best to take the advice
of John von Neumann, who said to a student “... in mathematics you don’t
understand things. You just get used to them.”

One of the greatest pleasures in completing a book is the opportunity to
thank the many sources of knowledge, advice, wisdom, and support that made
it possible. My thanks firstly to the Institute for Advanced Study and the or-
ganizers of the Women and Mathematics program for inviting me to give the
lectures that inspired this book. Thanks also to the National Science Founda-
tion for generous support while I wrote it.

Persi Diaconis introduced me to random matrix theory (and many other
things) and taught me to tell a good story.

Amir Dembo encouraged me to embark on this project and gave me valuable
advice about how to do it well.

I am grateful to Pierre Albin and Tyler Lawson for their constant willingness
to patiently answer all of my questions about geometry and algebra, and if
they didn’t already know the answers, to help me wade through unfamiliar
literature. Experienced guides make all the difference.

Many thanks to Jon Keating, Arun Ram, and Michel Ledoux for answering
my questions about their work and pointing me to better approaches than the
ones I knew about. Particular thanks to Nathaël Gozlan for explaining tricky
details that eluded me.

My sincere thanks to Andrew Odlyzko for providing the figures based on
his computations of zeta zeros.

Thanks to my students, especially Tianyue Liu and Kathryn Stewart, whose
questions and comments on earlier drafts certainly enriched the end result.

The excellent and topical photograph on the frontispiece was found (I still
don’t know how) by Tim Gowers.

As ever, thanks to Sarah Jarosz, this time for Undercurrent, which got me
most of the way there, and to Yo-Yo Ma for Six Evolutions, which carried me
to the finish line.

And how to thank my husband and collaborator, Mark Meckes? We have
discussed the material in this book for so long and in so many contexts that his
viewpoint is inextricably linked with my own. He has lived with the writing of
this book, always willing to drop a (probably more important) conversation or
task in order to let me hash out a point that suddenly felt terribly urgent. If my
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writing helps to illuminate the ideas I have tried to describe, it is because I got
to talk it out first at the breakfast table.



1
Haar measure on the classical compact matrix

groups

1.1 The classical compact matrix groups

The central objects of study in this book are randomly chosen elements of the
classical compact matrix groups: the orthogonal group O (n), the unitary group
U (n), and the symplectic group Sp (2n). The groups are defined as follows.

Definition

1. An n × n matrix U over R is orthogonal if

UUT = UT U = In, (1.1)

where In denotes the n × n identity matrix, and UT is the transpose of U.
The set of n × n orthogonal matrics over R is denoted O (n).

2. An n × n matrix U over C is unitary if

UU∗ = U∗U = In, (1.2)

where U∗ denotes the conjugate transpose of U. The set of n × n unitary
matrices over C is denoted U (n).

3. An 2n × 2n matrix U over C is symplectic if U ∈ U (2n) and

UJUT = UT JU = J, (1.3)

where

J :=
[

0 In

−In 0

]
. (1.4)

The set of 2n × 2n symplectic matrices over C is denoted Sp (2n).
Alternatively, the symplectic group can be defined as the set of n × n

matrices U with quaternionic entries, such that UU∗ = In, where U∗ is the
(quaternionic) conjugate transpose: for

H = {a + bi + cj + dk : a, b, c, d ∈ R}

11



12 Haar measure on the classical compact matrix groups

the skew-field of quaternions, satisfying the relations

i2 = j2 = k2 = ijk = −1,

quaternionic conjugation is defined by

a + bi + cj + dk = a − bi − cj − dk.

Quaternions can be represented as 2 × 2 matrices over C: the map

a + bi + cj + dk 7−→
[

a + bi c + di
−c + di a − bi

]
is an isomorphism of H onto{[

z w
−w z

]
: z,w ∈ C

}
.

More generally, if A, B,C,D ∈ Mn(R), then the matrix

M = A + Bi + Cj + Dk ∈ Mn(H)

is associated to the matrix

MC = I2 ⊗ A + iQ2 ⊗ B + Q3 ⊗C + iQ4 ⊗ D,

where

Q2 :=
[
1 0
0 −1

]
Q3 :=

[
0 1
−1 0

]
Q4 :=

[
0 1
1 0

]
and ⊗ denotes the Kronecker product. Any matrix M ∈ M2n(C) of this form
has the property that

MJ = JM

for J = Q3 ⊗ In as above, and the condition UU∗ = In for U ∈ Mn(H) is
equivalent to ŨŨ∗ = In over C.

We will generally consider the symplectic group in its complex version, as
a subgroup of the (complex) unitary group, although certain geometric proper-
ties of the group can be more cleanly characterized in the quaternionic form.

Note that it is immediate from the definitions that U is orthogonal if and
only if UT is orthogonal, and U is unitary or symplectic if and only if U∗ is.

The algebraic definitions given above are nicely compact but may not make
the importance of these groups jump right out; the following lemma gives some
indication as to why they play such a central role in many areas of mathematics.
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Lemma 1.1 1. Let M be an n× n matrix over R or C. Then M is orthogonal
or unitary if and only if the columns of M form an orthonormal basis of Rn,
resp. Cn.

2. For U an n×n matrix over R, U ∈ O (n) if and only if U acts as an isometry
on Rn; that is,

〈Uv,Uw〉 = 〈v,w〉

for all v,w ∈ Rn.

3. For U an n×n matrix over C, U ∈ U (n) if and only if U acts as an isometry
on Cn:

〈Uv,Uw〉 = 〈v,w〉

for all v,w ∈ Cn.

4. Consider C2n equipped with the skew-symmetric form

ω(v,w) = v1wn+1 + · · · + vnw2n − vn+1w1 − · · · − v2nwn =
∑
k,`

Jklvkw`,

where

J =

[
0 In

−In 0

]
as above. For a 2n× 2n matrix U over C, U ∈ Sp (2n) if and only if U is an
isometry of C2n which preserves ω:

〈Uv,Uw〉 = 〈v,w〉 and ω(Uv,Uw) = ω(v,w)

for all v,w ∈ C2n.

5. If U ∈ O (n) or U ∈ U (n), then | det(U)| = 1. If U ∈ Sp (2n), then det(U) =

1.

Proof Note that the (i, j)th entry of UT U (if U has real entries) or U∗U (if
U has complex or quaternionic entries) is exactly the inner product of the ith
and jth columns of U. So UT U = In or U∗U = In is exactly the same thing as
saying the columns of U form an orthonormal basis of Rn or Cn.

For U ∈ Mn(R), 〈Uv,Uw〉 =
〈
UT Uv,w

〉
, and so 〈Uv,Uw〉 = 〈v,w〉 for all v

and w if and only if UT U = I. The proofs of parts 3 and 4 are similar. For part
5, on any of the groups,

| det(U)|2 = det(U)det(U) = det(U) det(U∗) = det(UU∗) = det(In) = 1.

The easiest way to see that if U ∈ Sp (2n), then in fact det(U) = 1 is to use
the Pfaffian: for a skew-symmetric matrix A, the Pfaffian pf(A) is defined by a
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sum-over-permutations formula along the lines of the determinant, and has the
property that for 2n × 2n matrices A and B,

pf(BABT ) = det(B) pf(A).

Applying this to the defining relation of Sp (2n),

pf(J) = pf(UJUT ) = det(U) pf(J),

and so (using the easily verified fact that pf(J) , 0), det(U) = 1.
�

We sometimes restrict attention to the so-called “special” counterparts of the
orthogonal and unitary groups, defined as follows.

Definition The set SO (n) ⊆ O (n) of special orthogonal matrices is defined
by

SO (n) := {U ∈ O (n) : det(U) = 1}.

The set SO− (n) ⊆ O (n) (the negative coset) is defined by

SO− (n) := {U ∈ O (n) : det(U) = −1}.

The set SU (n) ⊆ U (n) of special unitary matrices is defined by

SU (n) := {U ∈ U (n) : det(U) = 1}.

Since the matrices of the classical compact groups all act as isometries of
Cn, all of their eigenvalues lie on the unit circle S1 ⊆ C. In the orthogonal and
symplectic cases, there are some built-in symmetries:

Exercise 1.2 Show that each matrix in SO (2n + 1) has 1 as an eigenvalue,
each matrix in SO− (2n + 1) has −1 as an eigenvalue, and each matrix in
SO− (2n + 2) has both −1 and 1 as eigenvalues.

The sets O (n), U (n), Sp (2n), SO (n), and SU (n) of matrices defined above
are compact Lie groups; that is, they are groups (with matrix multiplication as
the operation), and they are compact manifolds, such that the multiplication
and inverse maps are smooth. Moreover, these groups can naturally be viewed
as closed submanifolds of Euclidean space: O (n) and SO (n) are submanifolds
of Rn2

; U (n) and SU (n) are submanifolds of Cn2
and Sp (2n) is a submanifold

of C(2n)2
. Rather than viewing these matrices as n2-dimensional vectors, it is

more natural to view them as elements of the Euclidean spaces Mn(R) (resp.
Mn(C)) of n × n matrices over R (resp. C), where the Euclidean inner products
are written as

〈A, B〉HS := Tr(ABT )
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for A, B ∈ Mn(R), and

〈A, B〉HS := Tr(AB∗)

for A, B ∈ Mn(C). These inner products are called the Hilbert–Schmidt inner
products on matrix space.

The Hilbert–Schmidt inner product induces a norm on matrices; it is some-
times called the Frobenius norm or the Schatten 2-norm, or just the Euclidean
norm. This norm is unitarily invariant:

‖UBV‖HS = ‖B‖HS

when U and V are unitary (as is easily seen from the definition). This implies
in particular that if U ∈ O (n) (resp. U (n)), then the map RU : Mn(R)→ Mn(R)
(resp. RU : Mn(C)→ Mn(C)) defined by

RU(M) = UM

is an isometry on Mn(R) (resp. Mn(C)) with respect to the Hilbert–Schmidt
inner product.

The Hilbert–Schmidt norm is also submultiplicative:

‖AB‖HS ≤ ‖A‖HS ‖B‖HS .

In fact, this is true of all unitarily invariant norms (subject to the normalization
‖E11‖ = 1), but it is particularly easy to see for the Hilbert–Schmidt norm: let
B have columns b1, . . . , bn; then ‖B‖2HS =

∑n
j=1 |b j|

2, where | · | is the Euclidean
norm on Cn. Now, AB has columns Ab1, . . . , Abn, and so

‖AB‖2HS =

n∑
j=1

|Ab j|
2 ≤ ‖A‖2op‖B‖

2
HS ,

where ‖A‖op = sup|x|=1 |Ax| is the operator norm of A; i.e., the largest singular
value of A. Writing the singular value decomposition A = UΣV and using the
unitary invariance of the Hilbert–Schmidt norm,

‖A‖2op = σ2
1 ≤

n∑
j=1

σ2
j = ‖Σ‖2HS = ‖A‖2HS ,

from which the submultiplicativity follows. Indeed, the sharper estimate

‖AB‖HS ≤ ‖A‖op‖B‖HS

is often useful.
The discussion above gives two notions of distance on the classical compact
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matrix groups: firstly, the Hilbert–Schmidt inner product can be used to define
the distance between two matrices A and B by

dHS (A, B) := ‖A − B‖HS :=
√
〈A − B, A − B〉HS =

√
Tr

[
(A − B)(A − B)∗

]
.

(1.5)
Alternatively, since for example A, B ∈ U (n) can be thought of as living in a
submanifold of Euclidean space Mn(C), one can consider the geodesic distance
dg(A, B) between A and B; that is, the length, as measured by the Hilbert–
Schmidt metric, of the shortest path lying entirely in U (n) between A and B.
In the case of U (1), this is arc-length distance, whereas the Hilbert–Schmidt
distance defined in Equation (1.5) is the straight-line distance between two
points on the circle. Ultimately, the choice of metric is not terribly important:

Lemma 1.3 Let A, B ∈ U (n). Then

dHS (A, B) ≤ dg(A, B) ≤
π

2
dHS (A, B).

That is, the two notions of distance are equivalent in a dimension-free way.

Proof The inequality dHS (A, B) ≤ dg(A, B) follows trivially from the fact that
the Hilbert–Schmidt distance is the geodesic distance in Euclidean space.

For the other inequality, first note that dg(A, B) ≤ π
2 dHS (A, B) for A, B ∈

U (1); that is, that arc-length on the circle is bounded above by π
2 times Eu-

clidean distance.
Next, observe that both dHS (·, ·) and dg(·, ·) are translation-invariant; that is,

if U ∈ U (n), then

dHS (UA,UB) = dHS (A, B) and dg(UA,UB) = dg(A, B).

In the case of the Hilbert–Schmidt distance, this is immediate from the fact
that the Hilbert–Schmidt norm is unitarily invariant. For the geodesic distance,
translation invariance follows from the fact that, since any matrix U ∈ U (n)
acts as an isometry of Euclidean space, every path between A and B lying in
U (n) corresponds to a path between UA and UB of the same length, also lying
in U (n).

Now fix A, B ∈ U (n) and let A−1B = UΛU∗ be the spectral decomposition
of A−1B. Then for either distance,

d(A, B) = d(In, A−1B) = d(In,UΛU∗) = d(U∗U,Λ) = d(In,Λ),

and so it suffices to assume that A = In and B is diagonal.
Write B = diag(eiθ1 , . . . , eiθn ). Then the length of the path in U (n) from A to
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B given by U(t) := diag(eitθ1 , . . . , eitθn ), for 0 ≤ t ≤ 1 is∫ 1

0

∥∥∥U′(t)
∥∥∥

HS dt =

∫ 1

0

∥∥∥diag(iθ1eitθ1 , . . . , iθneitθn )
∥∥∥

HS dt

=

∫ 1

0

√
θ2

1 + · · · + θ2
ndt

≤
π

2

∫ 1

0

√
|1 − eiθ1 |2 + · · · + |1 − eiθn |2dt

=
π

2

∥∥∥In − diag(eiθ1 , . . . , eiθn )
∥∥∥

HS ,

using the fact that

θ2 = dg(1, eiθ)2 ≤
π2

4
dHS (1, eiθ),

as noted above. �

1.2 Haar measure

The main goal of this book is to answer the broad general question “What is a
random orthogonal, unitary, or symplectic matrix like?”. To do this, a natural
probability measure on each of these groups is needed.

Just as the most natural probability measure (i.e., uniform measure) on the
circle is defined by rotation invariance, if G is one of the matrix groups defined
in the last section, a “uniform random element” of G should be a random U ∈ G
whose distribution is translation invariant; that is, if M ∈ G is any fixed matrix,
then the equality in distribution

MU d
= UM d

= U

should be satisfied. Phrased slightly differently, the distribution of a uniform
random element of G should be a translation invariant probability measure µ
on G: for any measurable subset A ⊆ G and any fixed M ∈ G,

µ(MA) = µ(AM) = µ(A),

where MA := {MU : U ∈ A} and AM := {UM : U ∈ A}.
It is a theorem due to A. Haar that there is one, and only one, way to do this.

Theorem 1.4 Let G be any of O (n), SO (n), U (n), SU (n), or Sp (2n). Then
there is a unique translation invariant probability measure (called Haar mea-
sure) on G.
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The theorem is true in much more generality (in particular, any compact Lie
group has a Haar probability measure). In the most general case the property
of left-invariance is not equivalent to that of right-invariance, but in the case
of compact Lie groups, left-invariance implies right-invariance and vice versa,
so the phrase “translation-invariance” will be used in what follows, and will be
assumed to include both left- and right-invariance.

Exercise 1.5

1. Prove that a translation-invariant probability measure on O (n) is invariant
under transposition: if U is Haar-distributed, so is UT .

2. Prove that a translation-invariant probability measure on U (n) is invariant
under transposition and under conjugation: if U is Haar-distributed, so are
both UT and U∗.

Theorem 1.4 is an existence theorem which doesn’t itself provide a descrip-
tion of Haar measure in specific cases. In the case of the circle,i.e., U (1), it is
clear that Haar measure is just (normalized) arc length. The remainder of this
section gives six different constructions of Haar measure on O (n), with some
comments about adapting the constructions to the other groups. For most of the
constructions, the resulting measure is only shown to be invariant one one side;
the invariance on the other side then follows from the general fact mentioned
above that on compact Lie groups, one-sided invariance implies invariance on
both sides.

The Riemannian perspective

It has already been noted that O (n) ⊆ Mn(R) and that it is a compact sub-
manifold. It has two connected components: SO (n) and SO− (n), the set of
orthogonal matrices U with det(U) = −1. At each point U of O (n), there is a
tangent space TU(O (n)), consisting of all the tangent vectors to O (n) based at
U.

A map between manifolds induces a map between tangent spaces as follows.
Let M1,M2 be manifolds and ϕ : M1 → M2. If x ∈ TpM1, then there is a curve
γ[0, 1] → M1 such that γ(0) = p and γ′(0) = x. Then ϕ ◦ γ is a curve in M2

with ϕ ◦ γ(0) = ϕ(p) and (ϕ ◦ γ)′(0) is a tangent vector to M2 at ϕ(p). We take
this to be the definition of ϕ∗(x) (it must of course be checked that this gives a
well-defined linear map on TpM1 for each p).

A Riemannian metric g on a manifold M is a family of inner products, one
on the tangent space TpM to M at each point p ∈ M. The submanifold O (n)
inherits such a metric from Mn(R), since at each point U in O (n), TU(O (n)) is
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a subspace of TU(Mn(R)) � Mn(R). Because multiplication by a fixed orthog-
onal matrix V is an isometry of Mn(R), the induced map on tangent spaces is
also an isometry: if U ∈ O (n) with X1, X2 ∈ TU(O (n)) tangent vectors to O (n)
at U, and RV : O (n)→ O (n) denotes multiplication by a fixed V ∈ O (n), then

gVU((RV )∗X1, (RV )∗X2) = gU(X1, X2).

On any Riemannian manifold, the Riemannian metric uniquely defines a
notion of volume. Since the metric is translation-invariant, the normalized vol-
ume form on O (n) is a translation-invariant probability measure; that is, it’s
Haar measure.

Since each of the classical compact matrix groups is canonically embedded
in Euclidean space, this construction works the same way in all cases.

An explicit geometric construction

Recall that U ∈ O (n) if and only if its columns are orthonormal. One way to
construct Haar measure on O (n) is to add entries to an empty matrix column
by column (or row by row), as follows. First choose a random vector u1 uni-
formly from the sphere Sn−1 ⊆ Rn (that is, according to the probability measure
defined by normalized surface area). Take u1 as the first column of the matrix;
by construction, ‖u1‖ = 1. Now choose u2 randomly according to surface area
measure on (

u⊥1
)
∩ Sn−1 =

{
x ∈ Rn : ‖x‖ = 1, 〈x, u1〉 = 0

}
and let this be the second column of the matrix. Continue in this way; each col-
umn is chosen uniformly from the unit sphere of vectors which are orthogonal
to each of the preceding columns. The resulting matrix

| |

u1 . . . un

| |


is obviously orthogonal; the proof that its distribution is translation-invariant
is as follows.

Observe that if M is a fixed orthogonal matrix, then since

M


| |

u1 . . . un

| |

 =


| |

Mu1 . . . Mun

| |

 ,
the first column of M


| |

u1 . . . un

| |

 is constructed by choosing u1 uniformly
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from Sn−1 and then multiplying by M. But M ∈ O (n) means that M acts as a
linear isometry of Rn, so it preserves surface area measure on Sn−1. That is, the
distribution of Mu1 is exactly uniform on Sn−1.

Now, since M is an isometry, 〈Mu2,Mu1〉 = 0 and because M is an isometry
of Rn, it follows that Mu2 is uniformly distributed on

(Mu1)⊥ ∩ Sn−1 := {x ∈ Rn : |x| = 1, 〈Mu1, x〉 = 0} .

So the second column of M
[
u1 . . . un

]
is distributed uniformly in the unit sphere

of the orthogonal complement of the first column.
Continuing the argument, the distribution of M

[
u1 . . . un

]
is exactly the same

as the distribution of
[
u1 . . . un

]
; i.e., the construction is left-invariant. It follows

by uniqueness that it produces Haar measure on O (n).

To construct Haar measure on U (n), one need only draw the columns uni-
formly from complex spheres in Cn. To get a random matrix in SO (n), the
construction is identical except that there is no choice about the last column;
the same is true for SU (n).

The analogous construction on the representation of elements of Sp (2n) by
2n × 2n unitary matrices works as follows. For U to be in Sp (2n), its first
column u1 must lie in the set

{x ∈ C2n : ‖x‖ = 1, 〈x, Jx〉 = 0},

where J is the matrix defined in (1.4). This condition 〈x, Jx〉 = 0 defines a
hyperboloid in Cn (J is unitarily diagonalizable and has eigenvalues i and −i,
each with multiplicity n). The set above is thus the intersection of the sphere
with this hyperboloid; it is an (n − 2)-dimensional submanifold of Cn from
which we can choose a point uniformly: this is how we choose u1. If n > 1,
one then chooses the second column uniformly from the set

{x ∈ C2n : ‖x‖ = 1, 〈x, u1〉 = 0, 〈x, Jx〉 = 0, 〈x, Ju1〉 = 0};

for n = 1, one chooses the second column uniformly from

{x ∈ C2 : ‖x‖ = 1, 〈x, u1〉 = 0, 〈x, Jx〉 = 0 〈x, Ju1〉 = −1}.

The construction continues: the kth column uk is chosen uniformly from the in-
tersection of the unit sphere, the hyperboloid {x : 〈x, Jx〉 = 0}, and the (affine)
subspaces given by the conditions 〈x, Ju`〉 = 0 for 1 ≤ ` ≤ min{k − 1, n} and
〈x, Ju`〉 = −1 for n + 1 ≤ ` < k (if k ≥ n + 2). The argument that this construc-
tion is invariant under right-translation by an element of Sp (2n) is similar to
the argument above, making use of the fact that for M ∈ Sp (2n) given, M is
an isometry of Cn and MJ = JM.
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A different inductive construction

In this construction, a random element of O (n) is built up successively from
smaller groups. Since it is clear how to choose a random element of O (1) (flip
a coin!), one need only describe how to get a random element of O (n) from a
random element of O (n − 1).

Let Un−1 be distributed according to Haar measure on O (n − 1), and let M ∈
O (n) be independent of Un−1 and have its first column distributed uniformly
on Sn−1 ∈ Rn. (The distribution of the remaining columns is irrelevant.) Then
define Un by

Un := M
[
1 0
0 Un−1

]
. (1.6)

It is not hard to see that the columns of Un are distributed as described in the
previous approach: It is clear that in the matrix[

1 0
0 Un−1

]
,

the second column is uniformly distributed in the orthogonal complement of
the first, the third is uniform in the orthogonal complement of the first two, etc.
So for a deterministic M ∈ O (n), the first column of

M
[
1 0
0 Un−1

]
is just m1 (the first column of M), the second column is uniformly distributed in
the orthogonal complement of m1, etc. Taking M to be random but independent
of Un−1, it follows that the distribution of the columns of Un is exactly as in
the previous construction.

The construction works exactly the same way for the unitary and special
orthogonal and unitary groups, replacing Un−1 by a Haar-distributed element
of the next smaller-rank group, and choosing M in the desired group with its
first column uniformly in the sphere in Rn or Cn, as appropriate.

For the symplectic group, the construction is similar, albeit slightly more
complicated: let Un−1 be Haar-distributed in Sp (2(n − 1)), and let M ∈ Sp (2n)
be independent of Un−1 and with its first column m1 uniform in

{x ∈ C2n : ‖x‖ = 1, 〈x, Jx〉 = 0}

and its (n + 1)st column mn+1 uniform in

{x ∈ C2n : ‖x‖ = 1, 〈x,m1〉 = 0, 〈x, Jx〉 = 0 〈x, Jm1〉 = −1}.
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Write Un−1 as a 2 × 2 matrix of (n − 1) × (n − 1) blocks:

Un−1 =

[
(Un−1)1,1 (Un−1)1,2

(Un−1)2,1 (Un−1)2,1

]
,

and define Un ∈ Sp (2n) by

Un := M


1 0 0 0
0 (Un−1)1,1 0 (Un−1)1,2

0 0 1 0
0 (Un−1)2,1 0 (Un−1)2,2

 .
One can then check that Un ∈ Sp (2n) and has its columns distributed as in the
previous construction of Haar measure.

The Gauss-Gram-Schmidt approach

This construction is probably the most commonly used description of Haar
measure, and also one that is easy to implement on a computer.

Generate a random matrix X by filling an n × n matrix, with independent,
identically distributed (i.i.d.) standard Gaussian entries {xi, j}. That is, the joint
density (with respect to

∏n
i, j=1 dxi j) of the n2 entries of X is given by

1

(2π)
n2
2

n∏
i, j=1

e−
x2
i j
2 =

1

(2π)
n2
2

exp
−‖X‖2HS

2

 ,
(the collection of these random matrices is known as the real Ginibre ensem-
ble). The distribution of X is invariant under multiplication by an orthogonal
matrix: by a change of variables, the density of the entries of Y = MX with
respect to

∏
dyi j is

| det(M−1)|

(2π)
n2
2

exp
{
−
‖M−1Y‖2

2

}
=

1

(2π)
n2
2

exp
{
−
‖Y‖2

2

}
,

since M−1 is an isometry.
That is, the distribution above is translation-invariant, but it is not Haar mea-

sure because it does not produce an orthogonal matrix. To make it orthogonal,
we use the Gram-Schmit process. Performing the Gram-Schmidt process com-
mutes with multiplication by a fixed orthogonal matrix M: let xi denote the
columns of X. Then, for example, when the x1 component is removed from x2,
x2 is replaced with x2 − 〈x1, x2〉 x2. If the result is then multiplied by M, the
resulting second column is

Mx2 − 〈x1, x2〉Mx2.
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If, on the other hand, the multiplication by M is done before applying the
Gram-Schmidt algorithm, the result is a matrix with columns Mx1, . . . ,Mxn.
Now removing the component in the direction of column 1 from column 2, the
new column 2 is

Mx2 − 〈Mx1,Mx2〉Mx1 = Mx2 − 〈x1, x2〉Mx2,

since M is an isometry.
In other words, if T : GLn(R) → O (n) is the map given by performing the

Gram-Schmidt process (GLn(R) denotes the group of n × n invertible matrices
over R), then for a fixed orthogonal matrix M,

MT (X) = T (MX) d
= T (X).

That is, the distribution of T (X) is supported on O (n) and translation invariant,
meaning that we have once again constructed Haar measure.

Remarks

1. In different terminology, the argument above says that if X is a matrix of
i.i.d. standard Gaussian random variables and X = QR is the QR-decomposition
obtained via the Gram-Schmidt process, then Q is Haar-distributed on the
orthogonal group. But, WARNING: The QR-decomposition of a matrix is
not uniquely defined, and most computer algebra packages do not use the
Gram-Schmidt algorithm to produce it. The result of which is that having
a computer generate a matrix of i.i.d. standard Gaussian random variables
and then returning Q from its internal QR-algorithm will not produce a
Haar-distributed matrix; see [83] and [43] for further discussion.

2. The same algorithm as above works over C or H to produce a random uni-
tary or symplectic matrix. To produce a random element of SO (n) or SU (n),
one simply needs a final step: after carrying out the Gram-Schmidt process,
multiply the final column by the necessary scalar in order to force the de-
terminant of the matrix to be 1; it is not hard to see that this produces Haar
measure on the reduced group.

A second Gaussian construction

Again, let X be an n× n random matrix with i.i.d. standard Gaussian entries. It
is easy to see that X has rank n with probability 1, which implies in particular
that XT X is a symmetric rank n matrix, and so

XT X = VT diag(d1, . . . , dn)V
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for some V ∈ O (n) and d1, . . . , dn > 0; (XT X)−1/2 is then defined by

(XT X)−1/2 = VT diag(d−1/2
1 , . . . , d−1/2

n )V.

Now define the random matrix U by

U := X(XT X)−1/2. (1.7)

Then U is orthogonal:

UT U = (XT X)−1/2XT X(XT X)−1/2 = In,

and since for V ∈ O (n) fixed, VX d
= X,

U d
= VX((VX)T VX)−1/2 = VX(XT X)−1/2 = VU.

That is, U is distributed according to Haar measure on O (n).

Haar measure on SO (n) and SO− (n)

The constructions above describe how to choose a uniform random matrix from
O (n), but as we noted above, O (n) decomposes neatly into two pieces, those
matrices with determinant 1 (SO (n)) and those with determinant −1 (SO− (n)).
Theorem 1.4 says that SO (n) has a unique translation-invariant probability
measure; it is clear that this is simply the restriction of Haar measure on O (n)
to SO (n).

There is also a measure which is sometimes called Haar measure on SO− (n),
which is the restriction of Haar measure fromO (n) to SO− (n). The set SO− (n)
is of course not a group, it is a coset of the subgroup SO (n) in the group O (n);
we continue to use the name Haar measure on SO− (n) because this measure is
a probability measure invariant under translation within SO− (n) by any matrix
from SO (n). Haar measure on SO (n) and Haar measure on SO− (n) are related
as follows: if U is Haar-distributed in SO (n) and Ũ is any fixed matrix in
SO− (n), then ŨU is Haar-distributed in SO− (n).
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Euler angles

Recall the spherical coordinate system in Rn: each x ∈ Rn has spherical coor-
dinates r, θ1, . . . , θn−1, such that

x1 = r sin(θn−1) · · · sin(θ2) sin(θ1)

x2 = r sin(θn−1) · · · sin(θ2) cos(θ1)
...

xn−1 = r sin(θn−1) cos(θn−2)

xn = r cos(θn−1).

Here,

0 ≤ r < ∞,

0 ≤ θ1 < 2π,

0 ≤ θk ≤ π, 2 ≤ k ≤ n.

The spherical coordinates of a point are uniquely determined, except in the
cases that some θk (k ≥ 2) is 0 or π, or r = 0.

Spherical coordinates are the basis for the parametrization of SO (n) by the
so-called Euler angles. For θ ∈ [0, 2π) and 1 ≤ k ≤ n − 1, let

Uk(θ) :=


Ik−1

cos(θ) sin(θ)
− sin(θ) cos(θ)

In−k−1

 .
All matrices in SO (n) can be decomposed as a product of matrices of this type,
as follows.

Proposition 1.6 For any U ∈ SO (n), there are angles (called Euler angles)
{θk

j}1≤k≤n−1
1≤ j≤k

with 0 ≤ θk
1 < 2π and 0 ≤ θk

j < π for j , 1, so that

U = U(n−1) · · ·U(1),

where

U(k) = U1(θk
1) · · ·Uk(θk

k).

The Euler angles are unique except if some θk
j is 0 or π ( j ≥ 2).

Proof Observe that the result is vacuous for n = 1 and holds trivially for
n = 2. Suppose then, that it holds on SO (n − 1), and let U ∈ SO (n). Let
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1, θn−1
1 , . . . , θn−1

n−1 be the spherical coordinates of Uen, where e j denotes the jth
standard basis vector of Rn. Then

U1(θn−1
1 ) · · ·Un−1(θn−1

n−1)en =U1(θn−1
1 ) · · ·Un−2(θn−1

n−2)



0
...

0
sin(θn−1

n−1)
cos(θn−1

n−1)



= · · · =


sin(θn−1

n−1) · · · sin(θn−1
2 ) sin(θn−1

1 )
sin(θn−1

n−1) · · · sin(θn−1
2 ) cos(θn−1

1 )
· · ·

sin(θn−1
n−1) cos(θn−1

n−2)
cos(θn−1

n−1)


;

that is,

U1(θn−1
1 ) · · ·Un−1(θn−1

n−1)en = Uen,

and so [
U1(θn−1

1 ) · · ·Un−1(θn−1
n−1)

]−1
U =

[
Ũ 0
0 1

]
(1.8)

for some Ũ ∈ SO (n − 1). By the induction hypthesis, Ũ can be written as

Ũ = U(n−2) · · ·U(1).

By mild abuse of notation we now consider each of the implicit factors U`(θk
`),

a priori elements of SO (n − 1), to be elements of SO (n) fixing en. The claimed
factorization of U follows by multiplying both sides of (1.8) by U(n−1) :=
U1(θn−1

1 ) · · ·Un−1(θn−1
n−1).

�

Haar measure on SO (n) can be characterized as a distribution on the Euler
angles. Observe first that by a right-to-left version of the column-by-column
construction, if U ∈ SO (n) is distributed according to Haar measure, then Uen

is a uniform random point on Sn−1. Recall that the uniform probability measure
on the sphere Sn−1 is given in spherical coordinates by

Γ
(

n
2

)
2πn/2 sinn−2(θn−1) · · · sin(θ2)dθ1 · · · dθn−1.
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That is, the {θn−1
k }1≤k≤n−1 subset of the Euler angles of U have density

Γ
(

n
2

)
2πn/2 sinn−2(θn−1

n−1) · · · sin(θn−1
2 )

with respect to dθn−1
1 · · · dθn−1

n−1. Now, given Uen, the vector Uen−1 is uniformly
distributed on the unit sphere in orthogonal complement of Uen; equivalently,
given θn−1

1 , . . . , θn−1
n−1, [

U1(θn−1
1 ) · · ·Un−1(θn−1

n−1)
]−1

Uen−1

is distributed uniformly on the (n − 1)-dimensional unit sphere of e⊥n . Since
{θn−2

k }1≤k≤n−2 are exactly the (angular) spherical coordinates of this vector, it
follows that {θn−2

k }1≤k≤n−2 are independent of {θn−1
k }1≤k≤n−1, with density

Γ
(

n−1
2

)
2π(n−1)/2 sinn−3(θn−2

n−2) · · · sin(θn−2
2 ).

Continuing in this way, the Euler angles of U are independent, with joint den-
sity

n−1∏
k=1

Γ
(

k
2

)
2πk/2

 k∏
j=1

sin j−1(θk
j). (1.9)

From this construction, one can describe a natural analog for SO− (n); any
U ∈ SO− (n) can be written as

U = U(n−1) · · ·U(1)U(0), (1.10)

where

U(0) =

[
−1

In−1

]
,

and U(n−1) · · ·U(1) is the Euler angle decomposition of UU(0); i.e., the matrix
with the same columns as U, except for a sign change in the first column. That
is, Haar measure on SO− (n) can be described by choosing angles {θk

j}1≤k≤n−1
1≤ j≤k

according to the density in (1.9) and then letting U be given by the formula in
(1.10).

To choose U according to Haar measure on O (n), one simply chooses the
Euler angles according to (1.9), and then includes the U(0) factor with proba-
bility 1

2 , independent of the choice of angles.
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1.3 Lie group structure and character theory

The classical groups as Lie groups

As we have already noted, the classical compact matrix groups are Lie groups;
i.e., they are groups and they are differentiable manifolds such that the mul-
tiplication operation (A, B) 7→ AB and the inversion operation A 7→ A−1 are
smooth maps. Each of the groups has an associated Lie algebra, which is the
tangent space to the group at the identity matrix. Lie algebras play an important
role in understanding Lie groups, because they are relatively simple objects ge-
ometrically (vector spaces!), but they come equipped with an extra algebraic
structure called the Lie bracket which encodes much of the geometry of the
group itself.

The tool which connects the Lie algebra to the Lie group is the exponential
map. While one can define the exponential map on Riemannian manifolds in
general, the definition in the setting of the classical compact matrix groups can
be made very concrete; this in particular makes the source of the terminology
clear.

Definition Let X ∈ Mn(C). The matrix exponential eX is defined by

eX := In + X +
1
2

X2 +
1
3!

X3 + · · · .

We will make frequent use of the following basic facts.

Lemma 1.7 1. The sum defining the matrix exponential is convergent for
any X ∈ Mn(C).

2. If X ∈ Mn(C), eX is invertible with inverse e−X .

3. If X and Y commute, then eX+Y = eXeY ; this need not be true if X and Y do
not commute.

Proof 1. Recall that the Hilbert–Schmidt norm is submultiplicative; from
this it follows that

N∑
j=0

∥∥∥X j
∥∥∥

HS

j!
≤

N∑
j=0

‖X‖ j
HS

j!
≤

∞∑
j=0

‖X‖ j
HS

j!
< ∞

for all N, and so
∑∞

j=1
1
j! X j is convergent.

2. This point follows easily from the next, since X and −X commute.
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3. For N ∈ N, since X and Y commute we have

N∑
j=0

1
j!

(X + Y) j =

N∑
j=0

1
j!

j∑
k=0

(
j
k

)
XkY j−k

=

N∑
k=0

1
k!

Xk
N∑

j=k

1
( j − k)!

Y j−k =

N∑
k=0

1
k!

Xk
N−k∑
j=0

1
( j)!

Y j.

Now let N → ∞.
It is easy to cook up examples of noncommuting X and Y for which

eX+Y , eXeY .
�

Suppose now that X = UAU∗ with U ∈ U (n). Then

eX =

∞∑
j=0

1
j!

(UAU∗) j =

∞∑
j=0

1
j!

UA jU∗ = UeAU∗.

In particular, if X is unitarily diagonalizable (i.e., normal), with
X = U diag(d1, . . . , dn)U∗, then eX = U diag(ed1 , . . . , edn )U∗. More generally,
given a function f on C, for unitarily diagonalizable X as above, we define
f (X) by this route: if X = U diag(d1, . . . , dn)U∗, then

f (X) := U diag( f (d1), . . . , f (dn))U∗.

This prodecure is referred to as the functional calculus.

The function γ(t) = etX defines a one-parameter subgroup of GLn(C) (the
group of invertible n × n matrices over C), since etXesX = e(t+s)X . More geo-
metrically, γ(t) is a curve in GLn(C) with γ(0) = In and γ′(0) = X. In general,
the role of the exponential map in Riemannian geometry is that it gives a local
diffeomorphism of the tangent space to a manifold at a point to a neighbor-
hood of that point in the manifold. In the present context, it is what maps the
Lie algebra of a closed subgroup of GLn(C) down to a neighborhood of In in
the subgroup. The following lemma, whose proof we omit, gives the precise
statement needed.

Lemma 1.8 If G is any closed subgroup of GLn(C), then X is an element of
the Lie algebra of G if and only if etX ∈ G for all t ≥ 0. The map X 7→ eX

gives a diffeomorphism of a neighborhood of 0 in the Lie algebra of G to a
neighborhood of In in G.

The lemma allows us to identify the Lie algebras of the classical groups
concretely, as follows.
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Lemma 1.9

1. The Lie algebra of O (n) is

o(n) =
{
X ∈ Mn(R) : X + XT = 0

}
.

2. The Lie algebra of SO (n) is

so(n) = o(n) =
{
X ∈ Mn(R) : X + XT = 0

}
.

3. The Lie algebra of U (n) is

u(n) = {X ∈ Mn(C) : X + X∗ = 0} .

4. The Lie algebra of SU (n) is

su(n) = {X ∈ Mn(C) : X + X∗ = 0,Tr(X) = 0} .

5. The Lie algebra of Sp (2n) ⊆ U (n) is

sp(2n) = {X ∈ M2n(C) : X + X∗ = 0, XJ + JX∗ = 0} .

The quaternionic form of the Lie algebra of Sp (2n) ⊆ Mn(H) is

suH(n) = {X ∈ Mn(H) : X + X∗ = 0} ,

where X∗ denotes the quaternionic conjugate transpose.

Proof

1. Firstly, if γ : [0, 1] → O (n) is a curve with γ(0) = In, then γ(t)γ(t)T = In

for each t. Differentiating gives that

γ′(t)γ(t)T + γ(t)γ′(t)T = 0

for all t, and so in particular, if X = γ′(0) is the tangent vector to γ at In,
then X + XT = 0.

On the other hand, given X with X + XT = 0,

etX(etX)T = etXetXT
= etXe−tX = In,

and so γ(t) = etX is a curve in O (n) with γ(0) = In and γ′(0) = X. That is,
X is in the tangent space to O (n) at In.

2. Since SO (n) is a subgroup of O (n), the tangent space to SO (n) at In is
a subspace of o(n). In fact, it is clear geometrically that the Lie algebras
of O (n) and SO (n) must be the same, since O (n) is just the union of two
disconnected copies of SO (n) (the second copy being the negative coset
SO− (n)).

3. Exactly analogous to 1.
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4. As in the orthogonal case, since SU (n) is a subgroup of U (n), the tan-
gent space to SU (n) at In is a subspace of u(n); in this case, however,
it is not the whole space. The additional condition for a curve γ(t) to lie
in SU (n) is that det γ(t) = 1 for all t. Using the functional calculus, if
X = U diag(d1, . . . , dn)U∗,

det(eX) = det(U diag(ed1 , . . . , edn )U∗) = ed1+···+dn = eTr X .

In particular, if γ(t) = etX , then

d
dt

(det(γ(t))) =
d
dt

(
et Tr X

)
= (Tr X)et Tr X ,

and so X is tangent to SU (n) at In if and only if X ∈ u(n) (i.e., X + X∗ = 0)
and Tr X = 0.

5. For the complex form, since Sp (2n) is a subgroup ofU (2n), the Lie algebra
of Sp (2n) is a subspace of u(2n), hence the first condition in sp(2n). For
the second, observe that if γ : [0, 1] → Sp (2n) is a curve with γ(0) = I2n,
then differentiating the requirement that γ(t)Jγ(t)∗ = J for all t gives that
γ′(t)Jγ(t)∗+γ(t)Jγ′(t)∗ = 0; if X = γ′(0), then evaluating at t = 0 gives that
XJ + JX∗ = 0.

On the other hand, if X satisfies X + X∗ = 0 and XJ + JX∗ = 0, then

etX J =

∞∑
n=0

tn

n!
XnJ =

∞∑
n=0

tn

n!
(−Xn−1JX∗)

=

∞∑
n=0

tn

n!
(Xn−2J(X∗)2) = · · · = J

∞∑
n=0

(−tX∗)n

n!
= J(e−tX)∗,

and so etX ∈ Sp (2n) for all t.

Verifying the quaternionic form is exactly the same as the unitary case.

�

Observe that even though the matrices in u(n), su(n) and sp(2n) have com-
plex entries, they are real vector spaces only; they are not closed under mul-
tiplication by complex scalars. They do inherit a real inner product structure
from the Euclidean structure of the spaces in which they reside: the inner prod-
uct on u(n), su(n) and sp(2n) is

〈X,Y〉 := Re(Tr(XY∗)).

This is the unique real inner product which defines the same norm as the usual
Hilbert–Schmidt inner product on u(n), su(n) and sp(2n).
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Representation theory

We have already encountered two natural actions of the classical compact
groups on vector spaces; namely, on Rn or Cn by matrix-vector multiplica-
tion, and on Mn(R) or Mn(C) by multiplication. The topic of representation
theory is to understand all the ways a group can act on a vector space. This is
a vast and well-developed field, but in the context of the random matrix theory
on these groups, our main interest will be not in representation theory in its
full glory, but specifically in character theory. Essentially the reason for this is
that the irreducible characters form a basis for the space of class functions on
a group; i.e., those functions which are constant on conjugacy classes. Con-
jugacy classes of matrices within the classical groups are exactly the set of
matrices with a given set of eigenvalues, and so ultimately, a good basis of the
space of class functions gives us a route to studying eigenvalues.

A representation of a finite group G is a group homomorphism ρ : G →
GL(V), where V is a finite-dimensional vector space and GL(V) is the group of
invertible linear maps on V . A representation of a Lie group G is again a map
ρ : G → GL(V) for a finite-dimensional vector space V , which is both a homo-
morphism of groups and is required to be smooth. That is, a representiation of
G is a way of seeing G as acting on V , in a way that respects the structure of G
as a (Lie) group. Usually the notation for the map itself is suppressed, and one
refers to a representation V of a group G, and writes g · v or just gv rather than
ρ(g)(v).

A representation V of G is irreducible if V has no proper nontrivial sub-
spaces which are invariant under the action of G.

Example Let S n be the symmetric group on n letters; S n acts on Rn by per-
muting the coordinates of a vector. This representation of S n is not irreducible,
since the subspace V1 spanned by (1, 1, . . . , 1) is invariant under the action of
S n, as is the complementary subspace V2 = {(x1, . . . , xn) : x1 + · · · + xn = 0}.
Of course, V1 is an irreducible representation of S n (it is called the trivial one-
dimensional representation). Less obviously, but it’s not too hard to see, V2 is
also an irreducible representation of S n; it is called the standard representa-
tion.

Known representations of a group give rise to new ones in various ways.
The simplest are by taking direct sums or tensor products: if V and W are
representations of G, then V ⊕W and V ⊗W are also representations of G, via
the actions

g((v,w)) = (gv, gw) g(v ⊗ w) = (gv) ⊗ (gw).
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A representation V also induces a representation on the dual space V∗ of scalar-
valued linear functions on V: if v∗ ∈ V∗, then

(gv∗)(v) := v∗(g−1v).

A linear map ϕ : V → W between representations V and W of a group G is
called G-linear if for all v ∈ V and all g ∈ G,

g · ϕ(v) = ϕ(g · v).

Two representations V and W are isomorphic if there is a G-linear isomor-
phism between the vector spaces V and W.

A fundamental fact is that finite-dimensional representations of finite groups
and compact Lie groups can be decomposed into direct sums of irreducible
representations. The proof in either case is essentially the same, and rests on
the fact that for any representation V of such a group, one can define an inner
product on V such that each group element acts as an isometry. Indeed, take
any inner product 〈·, ·〉 on V , and define

〈v,w〉G :=

 1
|G|

∑
g∈G 〈gv, gw〉 , G finite;∫

〈gv, gw〉 dg, G a compact Lie group,

where the integration in the second case is with respect to normalized Haar
measure on G. Then if W ( V is a nonzero subspace which is invariant under
the action of G, the orthogonal complement W⊥ of W with respect to 〈·, ·〉G is
also G-invariant, and V = W ⊕ W⊥. Continuing in this way defines a decom-
position.

Suppose now that V = ⊕k
i=1V⊕ai

i = ⊕`j=1W⊕b j

j , with the Vi and the W j ir-
reducible representations. If a given summand Vi meets a summand W j non-
trivially, then they must be equal because otherwise their intersection would be
a non-trivial G-invariant subspace of at least one of them. The two decompo-
sitions can thus differ at most by permuting the summands. It therefore makes
sense to talk about the number of times an irreducible representation Vi occurs
in a representation V .

A basic tool in the representation theory of finite groups and compact Lie
groups is the following.

Lemma 1.10 (Schur’s lemma) Let G be a finite group or a compact Lie
group, and let V and W be finite-dimensional irreducible complex represen-
tations of G. Let ϕ : V → W be a G-linear map.

1. Either ϕ is an isomorphism or ϕ = 0.
2. If V = W, then there is a λ ∈ C such that ϕ = λ · I, with I the identity map

on V.
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Proof 1. Since ϕ is G-linear, kerϕ is an invariant subspace of V , and since
V is irreducible, this means that either kerϕ = V (and hence ϕ = 0) or else
kerϕ = {0}, so that ϕ is injective. In that case, imϕ is a nonzero invariant
subspace of W, and hence imϕ = W: ϕ is an isomorphism.

2. Since V is a complex vector space, ϕ must have at least one eigenvalue; i.e.,
there is a λ ∈ C such that ker(ϕ − λI) , {0}. But then since V is irreducible,
ker(ϕ − λI) = V and thus ϕ = λI.

�

Given a representation ρ : G → GL(V) of a group G, the character of the
representation is the function

χV (g) = Tr(ρ(g)).

Note that if h ∈ G, then

χV (hgh−1) = Tr(ρ(hgh−1)) = Tr(ρ(h)ρ(g)ρ(h)−1) = Tr(ρ(g)),

and so χV is a class function on G. The following properties are easy to check.

Proposition 1.11 Let V and W be representations of G. Then

• χV (e) = dim(V)
• χV⊕W = χV + χW

• χV⊗W = χVχW

• χV∗ = χV .

Proof Exercise. �

Since all finite-dimensional representations can be decomposed into irre-
ducible representations, the second property above says that all characters can
be written as sums of characters corresponding to irreducible representations;
these are referred to as the irreducible characters of the group. The irreducible
characters satisfy two important orthogonality relations with respect to the in-
ner product (·, ·)G given by

(α, β)G =

 1
|G|

∑
g∈G α(g)β(g), G finite;∫

G α(g)β(g)dg, G a compact Lie group,

where α, β : G → C are class functions. The first is the following.

Proposition 1.12 (First orthogonality relation) The irreducible characters of
a finite group or compact Lie group G are orthonormal with respect to (·, ·)G.
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In fact, one can prove that the irreducible characters form an orthonormal
basis of the space of class functions on G (in the compact Lie group case, this
should be interpreted as saying that the irreducible characters form a complete
orthonormal system in L2(G)). In the finite group case, this has the following
consequence.

Proposition 1.13 (Second orthogonality relation) Let χ1, . . . , χN be the irre-
ducible characters of the finite group G. Then

N∑
j=1

χ j(g)χ j(g′) =

 |G|c(g) , g ∼ g′;

0, otherwise,

where c(g) is the size of the conjugacy class of g and g ∼ g′ means that g and
g′ are conjugate.

Proof Let g ∈ G, and let

1[g](h) =

1, h ∼ g;

0, otherwise.

Since 1[g] is a class function and the irreducible characters are an orthonormal
basis, 1[g] can be expanded as

1[g] =

N∑
j=1

(1[g], χ j)Gχ j =

N∑
j=1

 1
|G|

∑
h∈G

1[g](h)χ j(h)

 χ j =
c(g)
|G|

N∑
j=1

χ j(g)χ j.

Multiplying both sides by |G|
c(g) and evaluating at g′ ∈ G gives the claimed

orthogonality. �

Exercise 1.14 Give a second proof by observing that the matrix
[√

c(g)
|G| χ j(g)

]
,

with rows indexed by j ∈ {1, . . . ,N} and columns indexed by conjugacy classes
of G, is unitary.

There are many important consequences of the orthogonality relations, too
many to go into here. It is worth mentioning, however, that the first orthogo-
nality relation implies that a representation is uniquely determined by its char-
acter. Indeed, given a representation V , we have seen that it is possible to write
V = ⊕k

i=1V⊕ai
i for irreducible representations Vi and integers ai. Then χV =∑k

i=1 aiχVi . But since the χVi are orthonormal, we have that ai = (χV , χVi )G.
That is, the decomposition V = ⊕k

i=1V⊕ai
i can be recovered from χV .

We now turn to the irreducible characters of the classical compact groups.
First, we will need to introduce some basic notions about integer partitions.
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Given a nonnegative integer N, a partition λ of N is an ordered tuple λ =

(λ1, . . . , λk) with λi ∈ N for each i, λ1 ≥ λ2 ≥ · · · ≥ λk, and λ1 + · · · + λk = N.
The λi are called the parts of λ. It is sometimes convenient to choose k to
be larger than what might seem to be the obvious choice by tacking 0’s onto
the end of λ; if two partitions differ only in this final string of 0’s, they are
considered to be the same. The number of nonzero parts of a partition λ is
called the length of λ and is denoted `(λ). The integer N, i.e., the sum of the
parts of λ, is called the weight of λ and is denoted |λ|.

The following altenative notation for integer partitions is often useful. Given
k ∈ N, we write λ = (1a1 , 2a2 , . . . , kak ) for the partition of N = a1+2a2+· · ·+kak

which has a1 parts of size 1, a2 parts of size 2, and so on. In this notation, the
partition (3, 3, 2, 1) of 9 would thus be written (11, 21, 32).

Integer partitions are often represented by Young diagrams: for a partition
λ = (λ1, . . . , λk), its Young diagram is a collection of boxes drawn from the
top-left corner1, with λ1 boxes in the top row, λ2 boxes in the next row, and
so on. The conjugate partition λ′ of λ is then the one corresponding to the
reflection of the Young diagram of λ across the diagonal. Here are the Young
diagrams of the partitions λ = (5, 4, 1) and λ′ = (3, 2, 2, 2, 1):

Now, for a multiindex α = (α1, . . . , αn), define the anti-symmetric polyno-
mial

aα(x1, . . . , xn) =
∑
π∈S n

sgn(π)xα1
π(1) · · · x

αn
π(n).

Note that if σ ∈ S n, then

aα(xσ(1), . . . , xσ(n)) = sgn(σ)aα(x1, . . . , xn).

In particular, this shows that aα(x1, . . . , xn) = 0 if xi = x j for any i , j and that
if any αi = α j with i , j, then aα ≡ 0.

Assume, then, that α1 > α2 > · · · > αn ≥ 0; in particular, α1 ≥ n − 1,

1 Some authors start from the bottom-right instead.
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α2 ≥ n− 2, and so on. Write α = λ+ δ, where δ = (n− 1, n− 2, . . . , 0) and λ is
a partition of length at most n. Then

aα(x1, . . . , xn) =
∑
π∈S n

sgn(π)
n∏

j=1

xλ j−n+ j
π( j) = det

([
xλ j+n− j

i
]
1≤i, j≤n

)
.

Since we have already observed that aα(x1, . . . , xn) vanishes if xi = x j, aα(x1, . . . , xn)
is divisible by xi − x j for each i < j, and therefore by their product, which is
the Vandermonde determinant∏

1≤i< j≤n

(xi − x j) = det
([

xn− j
i

]
1≤i, j≤n

)
= aδ(x1, . . . , xn).

The quotient

sλ(x1, . . . , xn) =
aλ+δ(x1, . . . , xn)
aδ(x1, . . . , xn)

is thus a symmetric polynomial in x1, . . . , xn. The polynomial sλ is called the
Schur function corresponding to λ and is defined as long as `(λ) ≤ n; by
convention, sλ = 0 if `(λ) > n. The Schur functions {sλ(x1, . . . , xn) : `(λ) ≤ n}
form one of many possible bases of the symmetric polynomials in x1, . . . , xn

over Z. Moreover, we have the following.

Theorem 1.15 For U ∈ U (n), denote the eigenvalues of U by eiθ1 , . . . , eiθn .
The functions

χλ(U) = sλ(eiθ1 , . . . , eiθn )

for `(λ) ≤ n are (distinct) irreducible characters of U (n).

These characters do not comprise a complete list of the irreducible charac-
ters ofU (n), but in fact there are not too many more. For each λ = (λ1, . . . , λn),
with λ1 ≥ · · · ≥ λn, define λ′ by

λ′ = (λ1 − λn, λ2 − λn, . . . , λn−1 − λn, 0).

Since the λi are not required to be nonnegative λ may not be a partition, but λ′

always is. The functions

χλ(U) = det(U)λn sλ′ (eiθ1 , . . . , eiθn )

give the complete list of the irreducible characters of U (n). Note from the
definition of sλ above that if the λ in the statement of Theorem 1.15 is in fact a
partition, then the two definitions given for χλ agree.

To give similar descriptions of (at least some of) the irreducible characters
for the other groups, one needs the following analogs of the Schur functions.



38 Haar measure on the classical compact matrix groups

Given a partition λ with `(λ) ≤ n,

s(b)
λ (x1, . . . , xn) :=

det
([

xλ j+n− j+ 1
2

i − x−(λ j+n− j+ 1
2 )

i

]
1≤i, j≤n

)
det

([
xn− j+ 1

2
i − x−(n− j+ 1

2 )
i

]
1≤i, j≤n

) ,

s(c)
λ (x1, . . . , xn) :=

det
([

xλ j+n− j
i + x−(λ j+n− j)

i

]
1≤i, j≤n

)
det

([
xn− j

i + x−(n− j)
i

]
1≤i, j≤n

) ,

and

s(d1)
λ (x1, . . . , xn) :=

det
([(

xλ j+n− j
i + x−(λ j+n− j)

i

)
1λ j+n− j,0 + 1λ j+n− j=0

]
1≤i, j≤n

)
det

([(
xn− j

i + x−(n− j)
i

)
1n− j,0 + 1n− j=0

]
1≤i, j≤n

)
If `(λ) ≤ n − 1, let

s(d2)
λ (x1, . . . , xn−1) =

det
([

xλ j+n− j+1
i − x−(λ j+n− j+1)

i

]
1≤i, j≤n

)
det

([
xn− j+1

i − x−(n− j+1)
i

]
1≤i, j≤n−1

)
Exercise 1.16 The functions s(b)

λ , s
(c)
λ , and s(d1)

λ are polynomials in x1, x−1
1 , . . . , xn, x−1

n ,
and s(d2)

λ is a polynomial in x1, x−1
1 , . . . , xn−1, x−1

n−1.

In the case of the remaining classical compact groups, we will restrict at-
tention to polynomial representations. A representation ρ : G → GL(V) of a
matrix group is called a polynomial representation if there is a basis of V
such that the entries of the matrix of ρ(g) are polynomials in the entries of g.
(If there is one such basis, this is in fact true for all bases of V .) The following
then gives the analog of Theorem 1.15 for the other groups.

Theorem 1.17

1. Let n ∈ N. For U ∈ SO (2n + 1), denote the eigenvalues of U by e±iθ1 , . . . , e±iθn , 1.
The irreducible polynomial representations of O (2n + 1) are indexed by
partitions λ such that λ′1 + λ′2 ≤ 2n + 1. For such a partition with `(λ) > n,
let λ̃ be the partition defined by

λ̃′i =

λ′i , i > 1;

2n + 1 − λ′1, i = 1.
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Let χλ denote the character of the irreducible representation of O (2n + 1)
corresponding to λ. Then

χλ(U) =

s(b)
λ (eiθ1 , . . . , eiθn ), `(λ) ≤ n;

s(b)
λ̃

(eiθ1 , . . . , eiθn ), `(λ) > n.

For U ∈ SO− (2n + 1), −U ∈ SO (n) and

χλ(U) = (−1)|λ|χλ(−U).

2. Let n ∈ N. For U ∈ SO (2n), denote the eigenvalues of U by e±iθ1 , . . . , e±iθn ;
for U ∈ SO− (2n), denote the eigenvalues of U by e±iφ1 , . . . , e±iφn−1 , 1,−1.
The irreducible polynomial representations of O (2n) are indexed by parti-
tions λ such that λ′1 + λ′2 ≤ 2n. For such a partition with `(λ) > n, let λ̃ be
the partition defined by

λ̃′i =

λ′i , i > 1;

2n − λ′1, i = 1.

Let χλ denote the character of the irreducible representation of O (2n)
corresponding to λ. Then for U ∈ SO (2n),

χλ(U) =

s(d1)
λ (eiθ1 , . . . , eiθn ), `(λ) ≤ n;

s(d1)
λ̃

(eiθ1 , . . . , eiθn ), `(λ) > n.

For U ∈ SO− (2n), if `(λ) = n, then χλ(U) = 0. Otherwise,

χλ(U) =

s(d2)
λ (eiφ1 , . . . , eiφn−1 ), `(λ) < n;

−s(d2)
λ̃

(eiφ1 , . . . , eiφn−1 ), `(λ) > n.

3. Let n ∈ N. For U ∈ Sp (2n), denote the eigenvalues of U by e±iθ1 , . . . , e±iθn .
The irreducible polynomial representations of Sp (2n) are indexed by par-
titions λ such that `(λ) ≤ n, and the value of the character corresponding
to λ at U is

χλ(U) = s(c)
λ (eiθ1 , . . . , eiθn ).

Notes and References

We have given only the barest introduction to matrix analysis on the classical
compact groups; for more, the books by Horn and Johnson [54, 55] and Bhatia
[11] are invaluable references.

Of the many constructions of Haar measure presented, most are part of the
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folklore of the field and it seems impossible to sort out who first wrote them
down. The parametrization by Euler angles is presumably the oldest, having
been used by Hurwitz in 1897; see [33] for a modern perspective. A survey of
methods of generating random matrices from a more computational viewpoint
is given in [83].

For the Lie group theory of the classical compact groups, Bump [16] gives
a beautifully written introduction; [16] also contains some of the representa-
tion theory which appears here, and the application to the empirical spectral
measure of a random unitary matrix which appears in Section 4.2 of this book.
The book by Fulton and Harris [48] gives an accessible and modern treatment
of representation theory in general, focusing on the case of Lie groups and Lie
algebras. The book [31] by Diaconis gives an introduction to the representa-
tion theory of the symmetric group and its applications in probability that a
probabilist can understand.

The character theory on the classical groups in the form presented here is
hard to ferret out of the literature; Littlewood’s [74] and Weyl’s [107] books
(from 1940 and 1939, respectively) are the standard references, but while they
are both gems, they are becoming increasingly inaccessible to the modern
reader (especially if her area of expertise is somewhat distant). In the case of
O (2n) and O (2n + 1), Littlewood and Weyl deal only with the characters in-
dexed by partitions of length at most n; the formulae presented here for those
cases can be found (written slightly differently) in Section 11.9 of Littlewood.
The characters corresponding to the longer partitions are related by so-called
modification rules due to King [67]. Ram [93] has a bottom-line summary for
evalutation of characters on SO (2n), SO (2n + 1), and Sp (2n).



2
Distribution of the entries

2.1 Introduction

We begin this section with a few useful and important properties of Haar mea-
sure on the classical compact groups that follow easily from translation invari-
ance and the definitions of the groups themselves. In fact, one such property
has already appeared (in Exercise 1.5): the distribution of a Haar random ma-
trix is invariant under transposition (and conjugate transposition). The next is
an obvious but important symmetry of Haar measure.

Lemma 2.1 Let U be distributed according to Haar measure in G, where G
is one of O (n), U (n), SO (n), SU (n), and Sp (2n). Then the entries of U are
identically distributed.

Proof To each permutation σ ∈ S n, associate the matrix Mσ with entries in
{0, 1}, such that mi j = 1 if and only if σ(i) = j; then Mσ ∈ O (n). Multiplication
on the left by Mσ permutes the rows by σ−1 and multiplication on the right by
Mσ permutes the columns by σ. One can thus move any entry of a matrix
U into, say, the top-left corner by multiplication on the right and/or left by
matrices in O (n). By the translation invariance of Haar measure, this means
that all entries have the same distribution if G is O (n) or U (n).

To complete the proof for the remaining groups, the permutation matrices
may need to be slightly modified. Since for σ ∈ S n, det(Mσ) = sgn(σ), the
permutation matrix Mσ ∈ SO (n) if and only if σ is even. For G = SO (n)
or SU (n), one therefore replaces one of the non-zero entries of Mσ with −1
to obtain a matrix from SO (n); choosing which entry intelligently (or rather,
failing to make the one possible non-intelligent choice) shows that any entry
of U ∈ SO (n) or SU (n) can be moved to the top left corner by left- and right-
multiplication by matrices within the group.

For the symplectic group, it is a straightforward exercise to show that the

41
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permutation matrices which are in Sp (2n) are exactly those which permute
the indices {1, . . . , n} amongst themselves and have σ(i + n) = σ(i) + n for the
rest. This allows one to move any of the first n rows to the top of a random
symplectic matrix and any of the first n columns all the way to the left, without
changing the distribution. For the remaining rows and columns, note that a
permutation with σ(i) ∈ {n + 1, . . . , 2n} for 1 ≤ i ≤ n and σ(i + n) = σ(i) − n
corresponds to a kind of anti-symplectic matrix: for such σ,

MσJM∗σ = −J.

However, changing the signs of the entries in either all of the first n columns (or
rows) or all of the second n columns (or rows) produces a symplectic matrix,
which then can be used to move rows, resp. columns, of a random symplectic
matrix to the top, resp. left. �

Exercise 2.2 If U is Haar-distributed in U (n), the distributions of Re(U11)
and Im(U11) are identical.

The symmetries above can be exploited to easily calculate moments of the
matrix entries, as follows.

Example Let U be Haar distributed in G, for G as above.

1. E[u11] = 0: note that Haar measure on O (n) and U (n) is invariant under
multiplication on the left by 

−1 0 0
0 1

. . .

0 1

 ; (2.1)

doing so multiplies the top row (so in particular u11) of U by −1, but doesn’t
change the distribution of the entries. So u11

d
= −u11, and thus E[u11] = 0.

For G = SO (n) or SU (n), just change the sign of any of the remaining ones
in the matrix in (2.1); for G = Sp (2n), change the sign of the (n + 1, n + 1)
entry in the matrix in (2.1).

2. E|u11|
2 = 1

n : because U ∈ G, we know that
∑n

j=1 |u1 j|
2 = 1, and because all

the entries have the same distribution, we can write

E|u11|
2 =

1
n

n∑
j=1

E|u1 j|
2 =

1
n
E

 n∑
j=1

|u1 j|
2

 =
1
n
.

(For G = Sp (2n), the n should be replaced with 2n.)
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Exercise 2.3 For U =
[
ui j

]n
j=1, compute Cov

(
ui j, uk`

)
and Cov

(
u2

i j, u
2
k`

)
for

all i, j, k, `.

Understanding the asymptotic distribution of the individual entries of Haar-
distributed matrices is of course more involved than just calculating the first
couple of moments, but follows from classical results. Recall that one con-
struction of Haar measure on O (n) involves filling the first column with a ran-
dom point on the sphere. That is, the distribution of u11 is exactly that of x1,
where x = (x1, . . . , xn) is a uniform random point of Sn−1 ⊆ Rn. The asymptotic
distribution of a single coordinate of a point on the sphere has been known for
over a hundred years; the first rigorous proof is due to Borel in 1906, but it was
recognized by Maxwell and others decades earlier.

Theorem 2.4 (Borel’s lemma) Let X = (X1, . . . , Xn) be a uniform random
vector in Sn−1 ⊆ Rn. Then

P
[√

nX1 ≤ t
] n→∞
−−−−→

1
√

2π

∫ t

−∞

e−
x2
2 dx;

that is,
√

nX1 converges weakly to a Gaussian random variable, as n→ ∞.

The lemma is also often referred to as the “Poincaré limit”. There are many
proofs; the one given below is by the method of moments. The following
proposition gives a general formula for integrating polynomials over spheres
to be used below.

Proposition 2.5 Let P(x) = |x1|
α1 |x2|

α2 · · · |xn|
αn . Then if X is uniformly dis-

tributed on
√

nS n−1,

E
[
P(X)

]
=

Γ(β1) · · · Γ(βn)Γ( n
2 )n( 1

2
∑
αi)

Γ(β1 + · · · + βn)πn/2 ,

where βi = 1
2 (αi + 1) for 1 ≤ i ≤ n and

Γ(t) =

∫ ∞

0
st−1e−sds = 2

∫ ∞

0
r2t−1e−r2

dr.

The proof is essentially a reversal of the usual trick for computing the nor-
malizing constant of the Gaussian distribution.

Proof of Borel’s lemma by moments Fix m ∈ N; to prove the lemma, we need
to show that if for each n, Yn is distributed as the first coordinate of a uniform
random point on Sn−1, then

lim
n→∞
E
[(√

nYn
)m]

= E
[
Zm]

, (2.2)
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where Z is a standard Gaussian random variable. Recall that the moments of
the standard Gaussian distribution are

E
[
Zm]

= (m − 1)!! =

(m − 1)(m − 3)(m − 5) . . . (1), m = 2k;

0, m = 2k + 1.
(2.3)

To prove (2.2), first note that it follows by symmetry that E[X2k+1
1 ] = 0 for

all k ≥ 0. Next, specializing Proposition 2.5 to P(X) = X2k
1 gives that the even

moments of X1 are

E
[
X2k

1
]

=
Γ
(
k + 1

2

)
Γ
(

1
2

)n−1
Γ
(

n
2

)
nk

Γ
(
k + n

2

)
π

n
2

.

Using the functional equation Γ(t + 1) = tΓ(t) and the fact that Γ
(

1
2

)
=
√
π,

this simplifies to

E
[
X2k

1
]

=
(2k − 1)(2k − 3) . . . (1)nk

(n + 2k − 2)(n + 2k − 4) . . . (n)
. (2.4)

Equation (2.2) follows immediately.
�

Corollary 2.6 For each n, let Un be a random orthogonal matrix. Then the
sequence {

√
n[Un]1,1} converges weakly to the standard Gaussian distribution,

as n→ ∞.

More recent work has made it possible to give a much more precise state-
ment which quantifies Borel’s lemma; doing so has important implications for
the joint distribution of the entries of a random orthogonal matrix. We first give
a brief review of various notions of distance between measures.

Metrics on probability measures

Let X be a metric space. The following are some of the more widely used
metrics on the set of Borel probability measures on X.

1. Let µ and ν be Borel probability measures on X. The total variation dis-
tance between µ and ν is defined by

dTV (µ, ν) := sup
A⊆X
|µ(A) − ν(A)| ,

where the supremum is over Borel measurable sets. Equivalently, one can
define

dTV (µ, ν) :=
1
2

sup
f :X→R

∣∣∣∣∣∫ f dµ −
∫

f dν
∣∣∣∣∣ ,



2.1 Introduction 45

where the supremum is over functions f which are continuous, such that
‖ f ‖∞ ≤ 1. When µ and ν have densities f and g (respectively) with respect
to a sigma-finite measure λ on X, then

dTV (X,Y) =
1
2

∫
| f − g|dλ.

The total variation distance is a very strong metric on probability mea-
sures; in particular, a discrete distribution cannot be approximated by a con-
tinuous distribution in total variation.

Exercise 2.7
1. Prove that the first two definitions are equivalent, and are equivalent to

the third when the measures have density.
Hint: The Hahn-Jordan decomposition of the signed measure µ − ν is
useful here.

2. Prove that the total variation distance between a discrete distribution and
a continuous distribution is always 1.

2. The bounded Lipschitz distance is defined by

dBL(µ, ν) := sup
‖g‖BL≤1

∣∣∣∣∣∫ g dµ −
∫

g dν
∣∣∣∣∣ ,

where the bounded-Lipschitz norm ‖g‖BL of g : X → R is defined by

‖g‖BL := max
{
‖g‖∞ , |g|L

}
,

where |g|L = supx,y
|g(x)−g(y)|

d(x,y) is the Lipschitz constant of g. If X is a sepa-
rable metric space, the bounded-Lipschitz distance is a metric for the weak
topology on probability measures on X (see, e.g., [39, Theorem 11.3.3]).

3. The Kolmogorov distance for probability measures on R is defined by

dK(µ, ν) := sup
x∈R

∣∣∣∣µ((−∞, x]
)
− ν

(
(−∞, x]

))∣∣∣∣ .
Convergence in Kolmogorov distance is in general stronger than weak con-
vergence, because for weak convergence, the distribution functions need
only converge to the limiting distribution function at its continuity points,
and the convergence is not required to be uniform.

4. The Lp Kantorovich distance for p ≥ 1 is defined by

Wp(µ, ν) := inf
π

[∫
d(x, y)p dπ(x, y)

] 1
p

,

where the infimum is over couplings π of µ and ν; that is, probability mea-
sures π on X × X such that π(A × Rn) = µ(A) and π(Rn × B) = ν(B). The
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Lp Kantorovich distance is a metric for the topology of weak convergence
plus convergence of moments of order p or less. It is often called the Lp

Wasserstein distance, and in the case of p = 1, the earth-mover distance.

When p = 1, there is the following alternative formulation:

W1(µ, ν) := sup
| f |L≤1

∣∣∣∣∣∫ f dµ −
∫

f dν
∣∣∣∣∣ .

The fact that this is an equivalent definition of W1 to the one given above
is the Kantorovich–Rubenstein theorem. There are dual representations for
Wp for p > 1 as well, but they are more complicated and will not come up
in this book.

As a slight extension of the notation defined above, if Y and Z are random
variables taking values in a metric space, dTV (Y,Z) is defined to be the total
variation distance between the distributions of Y and Z, etc.

Quantitative asymptotics for the entries of Haar-distributed
matrices

As noted above, it is a consequence of Borel’s lemma that the individual entries
of a random orthogonal matrix are approximately Gaussian for large matrices.
Borel’s lemma has been strengthened considerably, as follows.

Theorem 2.8 (Diaconis–Freedman [35]) Let X be a uniform random point
on
√

nSn−1, for n ≥ 5, and let 1 ≤ k ≤ n − 4. Then if Z is a standard Gaussian
random vector in Rk,

dTV
(
(X1, . . . , Xk),Z

)
≤

2(k + 3)
n − k − 3

.

That is, not only is an individual coordinate of a random point on the sphere
close to Gaussian, but in fact the joint distribution of any k coordinates is close
in total variation to k i.i.d. Gaussian random variables, if k = o(n). In the
random matrix context, this implies that for k = o(n), one can approximate
any k entries from the same row or column of U by independent Gaussian
random variables. This led Persi Diaconis to raised the question: How many
entries of U can be simultaneously approximated by independent normal ran-
dom variables? The answer to this question of course depends on the sense
of approximation. In the strongest sense, namely in total variation, the sharp
answer was found independently by T. Jiang and Y. Ma [59] and by K. Stewart
[99], following earlier work of Diaconis–Eaton–Lauritzen [37] and Jiang [60].
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Theorem 2.9 Let {Un} be a sequence of random orthogonal matrices with
Un ∈ O (n) for each n, and suppose that pnqn

n→∞
−−−−→ ∞, with pnqn = o(n). Let

Un(pn, qn) denote the top-left pn × qn block of Un, and let Z(pn, qn) denote a
pn × qn random matrix of i.i.d. standard normal random variables. Then

lim
n→∞

dTV (
√

nUn(pn, qn),Z(pn, qn)) = 0.

That is, a pn × qn principal submatrix can be approximated in total variation
by a Gaussian random matrix, as long as pnqn � n; in particular, this recovers
the theorem of Diaconis and Freedman (without the explicit rate of conver-
gence) when qn = 1. The theorem is sharp in the sense that if pn ∼ x

√
n and

qn ∼ y
√

n for x, y > 0, then dTV (
√

nUn(pn, qn),Z(pn, qn)) does not tend to zero.
If one relaxes the sense in which entries should be simulatenously approx-

imable by i.i.d. Gaussian variables, one can approximate a larger collection of
entries, as in the following theorem. Recall that a sequence of random variables

{Xn} tends to zero in probability (denoted Xn
P
−−−−→
n→∞

0) if for all ε > 0,

lim
n→∞
P [|Xn| > ε] = 0.

Theorem 2.10 (Jiang [60]) For each n, let Yn =
[
yi j

]n
i, j=1 be an n × n matrix

of independent standard Gaussian random variables and let Γn =
[
γi j

]n
i, j=1 be

the matrix obtained from Yn by performing the Gram-Schmidt process; i.e., Γn

is a random orthogonal matrix. Let

εn(m) = max
1≤i≤n,1≤ j≤m

∣∣∣√nγi j − yi j

∣∣∣.
Then

εn(mn)
P
−−−−→
n→∞

0

if and only if mn = o
(

n
log(n)

)
.

That is, in an “in probability” sense, as many as o
(

n2

log(n)

)
entries of U can be

simultaneously approximated by independent Gaussians.
Theorems 2.9 and 2.10 are the subject of Section 2.3 below.

2.2 The density of a principal submatrix

The main result of this section, important in its own right, is also the main in-
gredient in the proof of Theorem 2.9 on approximating the entries of a principal
submatrix of a random orthogonal matrix by i.i.d. Gaussian random variables.
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Theorem 2.11 Let U be an n × n random orthogonal matrix, and let Up,q

denote the upper-left p × q block of U. For q ≤ p and p + q ≤ n, the random
matrix Up,q has density with respect to Lebesgue measure, given by

g(M) =
w(n − p, q)

(2π)
pq
2 w(n, q)

det
(
Iq − MT M

) n−p−q−1
2 I0(MT M), (2.5)

where w(·, ·) denotes the Wishart constant:

ω(n, q)−1 = π
q(q−1)

4 2
nq
2

q∏
j=1

Γ

(
n − j + 1

2

)
,

and I0(A) is the indicator that A has q eigenvalues (counted with multiplicity)
in (0, 1).

The approach to the proof is via invariant theory. We first show that if Γp,q

has the density given in (2.5), then

UT
p,qUp,q

d
= ΓT

p,qΓp,q. (2.6)

We then use the fact that M 7→ MT M is a maximal invariant (to be defined
below) under the action of O (p) to show that (2.6) implies that Up,q

d
= Γp,q.

Carrying out this approach requires some background on some of the clas-
sical random matrix ensembles.

Let q ≤ n and let Z be an n × q random matrix with entries distributed as
independent standard Gaussian random variables. The q × q random matrix
S := ZT Z is called a Wishart matrix with n degrees of freedom. The ma-
trix S is positive definite with probability one, and its density (with respect to
Lebesgue measure) on the set S +

q of q×q real positive definite matrices is given
by

p(M) = ω(n, q) det(M)
n−q−1

2 e−
1
2 Tr(M).

Now let q ≤ min{n1, n2}, and let S 1 and S 2 be q × q Wishart matrices, with
n1 and n2 degrees of freedom, respectively. Then S 1 + S 2 has rank q with
probability one, and

B := (S 1 + S 2)−1/2S 1(S 1 + S 2)−1/2 (2.7)

is said to have the matrix-variate beta distribution B(n1, n2; Iq).
Note in particular that if S 1 and S 2 are as in the definition above, then since

Iq − (S 1 + S 2)−1/2S 1(S 1 + S 2)−1/2 = (S 1 + S 2)−1/2S 2(S 1 + S 2)−1/2,
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B has all its eigenvalues in (0, 1). The density (with respect to Lebesgue mea-
sure) of B on the set Pq of q× q symmetric matrices with eigenvalues in (0, 1),
is given by

g(M) =
w(n1, q)w(n2, q)

w(n1 + n2, q)
det(M)(n1−q−1)/2 det(Iq − M)(n2−q−1)/2. (2.8)

Lemma 2.12 Let q ≤ p and p + q ≤ n, and let Up,q be the upper-left p × q
block of a Haar-distributed U ∈ O (n). Then Σp,q := UT

p,qUp,q ∈ Mq(R) has the
matrix-variate beta distribution B(p, n − p; Iq).

Proof It follows from the column-by-column construction of Haar measure
that the first q columns of U form a random element in

Fq,n :=



| |

U1 · · · Uq

| |

 :
〈
Ui,U j

〉
= δi j

 ,
whose distribution is invariant under the action of O (n) by multiplication on
the left. The random matrix Up,q in the statement of the lemma is then the first
p rows of a random element in Fq,n.

Now, the second Gaussian construction of Haar measure given in Section
1.2 can be generalized to produce a translation-invariant random element of
Fq,n from a collection of Gaussian random variables, as follows. Let X be an
n × q random matrix with i.i.d. standard Gaussian entries, and define

Ũ := X(XT X)−1/2.

The matrix X has rank q with probability one, and so Ũ is well-defined, and
its distribution is easily seen to be invariant under the action of O (n) by left-
multiplication. It therefore suffices to show that the distribution of the first p
rows of ŨT Ũ is the same as the distribution of B in (2.7), with n1 = p and
n2 = n − p. To see this, decompose the matrix X as

X =

[
Y
Z

]
,

where Y is the first p rows; then

Up,q
d
= Y(YT Y + ZT Z)−1/2,

and so

Σp,q
d
= (S 1 + S 2)−1/2S 1(S 1 + S 2)−1/2,
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where S 1 := YT Y and S 2 := ZT Z. The matrices S 1 and S 2 are q × q Wishart
matrices, with p and n − p degrees of freedom, respectively, and so

Σp,q = (S 1 + S 2)−1/2S 1(S 1 + S 2)−1/2

has a matrix-variate beta distribution. �

We next confirm that the density of UT
p,qUp,q identified in Lemma 2.12 is as

it should be; that is, if Γp,q has the claimed density of Up,q, then ΓT
p,qΓp,q also

has a matrix-variate beta distribution.

Lemma 2.13 Suppose that Γp,q is a p × q random matrix with density

g(M) =
w(n − p, q)

(2π)
pq
2 w(n, q)

det
(
Iq − MT M

) n−p−q−1
2 I0(MT M) (2.9)

with respect to Lebesgue measure, where I0(MT M) is the indicator that all of
the eigenvalues of MT M lie in (0, 1). Then ΓT

p,qΓp,q has the matrix-variate beta
distibution B(p, n − p; Iq).

Proof Let X be the set of p × q matrices M over R such that all of the eigen-
values of MT M lie in (0, 1).

The matrix ΓT
p,qΓp,q has density h on S +

q if and only if for all f : S +
q → R,∫

X

f (MT M)g(M)dM =

∫
S +

q

f (A)h(A)dA.

Define g∗ : S +
q → R by

g∗(A) =
ω(n − p, q)

(2π)
pq
2 ω(n, q)

det(Iq − A)
n−p−q−1

2

so that g(M) = g∗(MT M) for M ∈ X. Writing f (A) = f1(A)ϕ(A) with ϕ(A) =

(2π)−
pq
2 exp

(
− 1

2 Tr(A)
)
, we have that∫

X

f (MT M)g(M)dM =

∫
f1(MT M)g∗(MT M)I0(MT M)ϕ(MT M)dM,

(2.10)
where the integral is now over the space Mp,q(R) all real p × q matrices.

Now, ϕ(MT M) is exactly the standard Gaussian density on Mp,q(R), so the
right-hand side of (2.10) is simply

E[ f1(S )g∗(S )I0(S )],

where S is a q × q Wishart matrix with p degrees of freedom. That is, for all
f1 : S +

q → R,



2.2 The density of a principal submatrix 51

∫
S +

q

f1(A)g∗(A)I0(A)p(A)dA =

∫
S +

q

f1(A)ϕ(A)h(A)dA,

where p is the density of S . It follows that

h(A) =
g∗(A)I0(A)p(A)

ϕ(A)

=
w(p, q)w(n − p, q)

w(n, q)
det(A)(p−q−1)/2 det(Iq − A)(n−p−q−1)/2I0(A),

which is exactly the density of the matrix-variate beta distribution B(p, n −
p; Iq).

�

Finally, we show that UT
p,qUp,q

d
= ΓT

p,qΓp,q implies that Up,q
d
= Γp,q. To do

this, we need the following concept.

Definition Let f : X → Y and suppose that a group G acts on X. The function
f is invariant under the action of G if

f (x) = f (g · x) for all g ∈ G.

The function f is a maximal invariant if whenever f (x1) = f (x2), there is a
g ∈ G such that x1 = g · x2.

Lemma 2.14 Let q ≤ p. The function M 7→ MT M is a maximal invariant on
p × q matrices of rank q, under the action of O (p) by left-multiplication.

Proof Clearly, M 7→ MT M is invariant under the action of O (p). Suppose,
then, that MT

1 M1 = MT
2 M2. Then

〈
MT

1 M1v,w
〉

=
〈
MT

2 M2v,w
〉

for all v,w ∈
Rq; that is,

〈M1v,M1w〉 = 〈M2v,M2w〉 for all v,w ∈ Rq.

It follows that if (v1, . . . , vk) are such that (M1v1, . . . ,M1vk) is an orthonormal
basis of {M1v : v ∈ Rq}, then (M2v1, . . . ,M2vk) is an orthonormal basis of
{M2v : v ∈ Rq}. Since M1 has rank q, it acts as an injective map Rq → Rp,
and so there is a well-defined map U : {M1v : v ∈ Rq} → {M2v : v ∈ Rq}

with U(M1v) = M2v for all v ∈ Rq. Extend U to a map Ũ on all of Rp such
that Ũ sends an orthonormal basis to an orthonormal basis; then Ũ ∈ O (p) and
ŨM1 = M2. �

Observe that if τ : X → Y is a maximal invariant under the action of G
on X, and if f : X → Z is any G-invariant function, then there is a function
f ∗ : τ(X) → Z such that f (x) = f ∗(τ(x)) for all x ∈ X. Indeed, if y ∈ τ(X),
then y = τ(x) for some x. Since τ is a maximal invariant, if y = τ(x′) also, then
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x = gx′, and so f (x) = f (x′) because f is G-invariant. Taking f ∗(y) = f (x)
thus produces a well-defined function f ∗.

Our interest in maximal invariants lies in the following lemma.

Proposition 2.15 Suppose the compact group G acts measurably on S , and
let τ : S → S ′ be a maximal invariant. Suppose that X1, X2 are random vari-
ables in S , with G-invariant distributions. Suppose further that τ(X1) d

= τ(X2).
Then X1

d
= X2.

Proof Let f : S → R be bounded and measurable, and let g be distributed
according to Haar measure on G. It follows by the translation invariance of
Haar measure that the function

x 7→ E[ f (g · x)]

is G-invariant, so as discussed above, there is a function f ∗ : S ′ → R such that
E[ f (g · x)] = f ∗(τ(x)) for each x ∈ S . If g is taken to be independent of X1 and
X2, then by G-invariance and Fubini’s theorem,

E[ f (X1)] = E[ f (g · X1)] = E[ f ∗(τ(X1))]

= E[ f ∗(τ(X2))] = E[ f (g · X2)] = E[ f (X2)].

That is, X1
d
= X2. �

Finally, if Γp,q has the density claimed in Theorem 2.11 for Up,q, then the
distribution of Γp,q is trivially seen to be O (p)-invariant, and of course the
distribution of Up,q is O (p)-invariant. It thus follows from Lemmas 2.12, 2.13

and 2.14 and Proposition 2.15 that Up,q
d
= Γp,q.

2.3 How much is a Haar matrix like a Gaussian matrix?

In total variation

Rather than proving the full version of Theorem 2.9, we will prove the im-
portant special case of square principal submatrices. The basic ideas of the
proof are the same, but the assumption that the submatrix is square, so that
pn = o(

√
n), results in considerable technical simplification.

Theorem 2.16 Let {Un} be a sequence of Haar-distributed random orthog-
onal matrices with Un ∈ O (n) for each n, and suppose that pn

n→∞
−−−−→ ∞, with

pn = o(
√

n). Let Un(pn) denote the top-left pn × pn block of Un, and let Zpn
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be a pn × pn random matrix whose entries are i.i.d. standard normal random
variables. Then

lim
n→∞

dTV (
√

nUn(pn),Zpn ) = 0.

The essential idea of the proof is the following. Recall that if random vectors
X and Y have densities f and g (respectively) with respect to a sigma-finite
measure λ, then

dTV (X,Y) =
1
2

∫
| f − g|dλ.

Let gn,p denote the density of
√

nUn(p), and let ϕp denote the density of Zp.
Letting λ denote Lebesgue measure on Mp(R),

dTV (
√

nUn(p),Zp) =
1
2

∫
Mp(R)

|gn,p − ϕp|dλ

=
1
2

∫
Mp(R)

∣∣∣∣∣∣gn,p

ϕp
− 1

∣∣∣∣∣∣ϕpdλ =
1
2
E

∣∣∣∣∣∣gn,p(Zp)
ϕp(Zp)

− 1

∣∣∣∣∣∣ .
Showing that dTV (

√
nUn(pn),Zpn ) → 0 as n → ∞ is thus equivalent to

showing that the random variable gn,pn (Zpn )
ϕpn (Zpn ) tends to 1 in expectation.

To simplify the notation, write p = pn and Zpn = Z. From Theorem 2.11 and
a change of variables,

gn,p(Z) =
w(n − p, p)

(2πn)
p2
2 w(n, p)

det
(
Ip −

1
n

ZT Z
) n−2p−1

2

I0

(
1
n

ZT Z
)
,

with

ω(n, p) =

π p(p−1)
4 2

np
2

p∏
j=1

Γ

(
n − j + 1

2

)
−1

and I0

(
1
n ZT Z

)
the indicator that the eigenvalues of 1

n ZT Z lie in (0, 1). The den-

sity ϕp is given by ϕp(Z) = 1
(2π)p2/2

exp
(
− 1

2 Tr(ZT Z)
)
.

If 0 < λ1 < · · · < λp are the eigenvalues of ZT Z (which are indeed strictly
positive and distinct with probability one when Z is a matrix of i.i.d. Gaussian
variables), the densities above can be rewritten as

gn,p(Z) =
w(n − p, p)

(2πn)
p2
2 w(n, p)

p∏
j=1

(
1 −

λ j

n

) n−2p−1
2

1(0,n)(λp)
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and

ϕp(Z) =
1

(2π)
p2
2

exp

−1
2

p∑
j=1

λ j

 ,
so that

gn,p(Z)
ϕp(Z)

=
w(n − p, p)

n
p2
2 w(n, p)

exp


p∑

j=1

[
λ j

2
+

n − 2p − 1
2

log
(
1 −

λ j

n

)]1(0,n)(λp).

We first investigate the asymptotics of the coefficient.

Lemma 2.17 If p = o(
√

n), then

w(n − p, p)

n
p2
2 w(n, p)

= exp
{
−

p3

2n
+ o(1)

}
.

Proof First suppose that p is even. From the definition of w(n, p),

w(n − p, p)

n
p2
2 w(n, p)

=

(
2
n

) p2

2
p∏

j=1

Γ
(

n− j+1
2

)
Γ
(

n−p− j+1
2

) .
Now,

Γ
(

n− j+1
2

)
=

(
n− j−1

2

) (
n− j−3

2

)
· · ·

(
n− j−(p−1)

2

)
Γ
(

n− j−(p−1)
2

)
=

(n
2

) p
2

Γ
(

n− j−(p−1)
2

) p
2∏
`=1

(
1 − j+2`−1

n

)
,

and so

w(n − p, p)

n
p2
2 w(n, p)

=

p∏
j=1

p
2∏
`=1

(
1 − j+2`−1

n

)
= exp


p−1∑
j=0

p
2∑
`=1

log
(
1 − j+2`

n

) .
For n large enough, j+2`

n ≤ 1
2 , and so∣∣∣∣log
(
1 − j+2`

n

)
+

j+2`
n

∣∣∣∣ ≤ (
j+2`

n

)2
,

and
p−1∑
j=0

p
2∑
`=1

(
j+2`

n

)2
=

1
n2

[
7

12
p4 +

1
2

p3 −
1

12
p2

]
= o(1),

since p = o(
√

n).
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That is,

w(n − p, p)

n
p2
2 w(n, p)

= exp

−
p−1∑
j=0

p
2∑
`=1

j+2`
n + o(1)

 = exp
{
−

p3

2n
+ o(1)

}
.

When p is odd, the proof is essentially the same but requires a small tweak;
the neat cancellation in the ratio of gamma functions above required p to be
even. It follows from Stirling’s formula, though, that Γ

(
n+1

2

)
=

√ n
2 Γ

(
n
2

) (
1 + O

(
1
n

))
,

so that when p is odd,

p∏
j=1

Γ
(

n− j+1
2

)
Γ
(

n−p− j+1
2

) =

p∏
j=1

√
n− j

2 Γ
(

n− j
2

) (
1 + O

(
1
n

))
Γ
(

n−p− j+1
2

) .

The proof now proceeds along the same lines as before.
�

The bulk of the proof is of course to analyze the random variable

Ln := exp


p∑

j=1

[
λ j

2
+

n − 2p − 1
2

log
(
1 −

λ j

n

)]1(0,n)(λp).

Proposition 2.18 For Ln defined as above, e
−p3

2n Ln converges to 1 in proba-
bility, as n tends to infinity.

Proof We will in fact prove the equivalent statement that − p3

2n + log(Ln) tends
to zero in probability.

For x ∈ (0, n), let f (x) = x
2 +

n−2p−1
2 log

(
1 − x

n

)
. Then by Taylor’s theorem,

there is some ξ ∈ (0, x) such that

f (x) =
(

2p+1
2n

)
x −

(
n−2p−1

4n2

)
x2 −

(
n−2p−1
6(n−ξ)3

)
x3.

Now, it is known that the largest eigenvalue of ZT Z is of order p with high
probability; formally, for t ≥ 0,

P

λp ≥ p
(
1 +

√
p
n

+ t
)2 ≤ e−

pt2

2

(see, e.g., [28].) Let Ωp :=
{

Z : λp ≥ p
(
2 +

√
p
n

)2
}

; for Z ∈ Ωc
p, and ξ ∈ (0, λi)

for some i, (
n − 2p − 1
6(n − ξ)3

)
≤

(
n − 2p − 1
6(n − 9p)3

)
≤

1
n2 ,
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for n large enough. We thus have that for Z ∈ Ωc
p,

p∑
j=1

f (λ j) =

p∑
j=1

[(
2p+1

2n

)
λ j −

(
n−2p−1

4n2

)
λ2

j −

(
n−2p−1

6(n−ξ(λ j))3

)
λ3

j

]
=

(
2p+1

2n

)
Tr(ZT Z) −

(
n−2p−1

4n2

)
Tr((ZT Z)2) + E Tr((ZT Z)3),

where the random variable E has 0 ≤ E ≤ 1
n2 .

Now, the means and variances of Tr((ZT Z))k) are known; see, e.g., [6]. In
particular, for Z a p × p matrix of i.i.d. standard Gaussian random variables,

ETr((ZT Z))k) =
pk+1

k

(
2k

k + 1

)
+ O(pk)

and

Var
[
Tr((ZT Z))k)

]
= O(p2k),

as p tends to infinity. In particular,

−
p3

2n
+

p∑
j=1

f (λ j) =
(

2p+1
2n

) {
Tr(ZT Z) − ETr(ZT Z)

}
−

(
n−2p−1

4n2

) {
Tr((ZT Z)2) − ETr((ZT Z)2)

}
+ E Tr((ZT Z)3) +

p2

2n
+

p3(p + 1)
n2 .

By Chebychev’s inequality,

P

[(
2p + 1

2n

) ∣∣∣Tr(ZT Z) − ETr(ZT Z)
∣∣∣ > ε]

≤
(2p + 1)2 Var

(
Tr(ZT Z)

)
4n2ε2 = O

(
p4

n2

)
= o(1).

Similarly,

P

[(
n − 2p − 1

4n2

) ∣∣∣Tr((ZT Z)2) − ETr((ZT Z)2)
∣∣∣ > ε]

≤
(n − 2p − 1)2 Var

(
Tr((ZT Z)2)

)
16n4ε2 = O

(
p4

n2

)
= o(1),

and

P
[
|E Tr((ZT Z)3)| > ε

]
≤ P

[
|Tr((ZT Z)3)| > n2ε

]
≤

Var
(
Tr((ZT Z)3)

)
n4ε2 − (ETr((ZT Z)3))2 = O

(
p6

n4

)
= o(1).
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It follows that

P


∣∣∣∣∣∣∣∣− p3

2n
+

p∑
j=1

f (λ j)

∣∣∣∣∣∣∣∣ > ε


≤ P[Ωp] + P
[(

2p+1
2n

) {
Tr(ZT Z) − ETr(ZT Z)

}
>
ε

3

]
+ P

[(
n−2p−1

4n2

) {
Tr((ZT Z)2) − ETr((ZT Z)2)

}
>
ε

3

]
+ P

[
|E Tr((ZT Z)3)| >

ε

3

]
,

which tends to zero as n→ ∞.
�

To summarize: dTV (
√

nUn(p),Zp) → 0 as n → ∞ if and only if the random
variable Rn := gn,p(Z)

ϕp(Z) tends to 1 in expectation; we have shown that Rn tends to

1 in probability. Note that in fact ERn =
∫ gn,p(z)

ϕp(z) ϕp(z)dz = 1 for every n.
Now,

E|Rn − 1| = E
[
|Rn − 1|1|Rn−1|≥δ + |Rn − 1|1|Rn−1|<δ

]
≤ δ + E

[
|Rn − 1|1|Rn−1|≥δ

]
≤ δ + E

[
(Rn + 1)1|Rn−1|≥δ

]
,

and so it suffices to show that for δ > 0 fixed, E
[
Rn1|Rn−1|≥δ

]
→ 0 as n→ ∞.

Suppose not; i.e., that there is a subsequence Rnk such that E
[
Rnk1|Rnk−1|≥δ

]
≥

ε > 0 for all k. Since Rnk does converge to 1 in probability, there is a further
subsequence Rnk(i) which converges to 1 almost surely. But since ERnk(i) = 1,

E
[
Rnk(i)1|Rnk(i)−1|≥δ

]
= 1 − E

[
Rnk(i)11−δ<Rnk(i)<1+δ

]
,

which tends to 0 by the dominated convergence theorem, in contradiction to the
assumption. We may thus conclude that E|Rn − 1| → 0 as n → ∞, completing
the proof of Theorem 2.16.

In probability

As discussed in Section 2.1, if the notion of approximation is relaxed from
the very strong total variation distance all the way to an in-probability type of
approximation, it is possible to approximate many more entries of a random
orthogonal matrix by i.i.d. Gaussian random variables. The basic idea is to
exploit the Gauss–Gram–Schmidt construction of Haar measure described in
Chapter 1, and to show that, in the sense of Theorem 2.10, the Gram–Schmidt
process does not change the distribution of the entries of the Gaussian random
matrix very much. This is intuitively quite reasonable: when performing the
Gram–Schmidt process on the k + 1st column of the random matrix, the first
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step is to subtract the projection of that column onto the span of the first k
columns. The original column is a Gaussian random vector whose length is
typically about

√
n, and whose projection onto a k-dimensional subspace typ-

ically has length about
√

k, so that if k is not too close to n, the subtraction
makes little difference. The next step is to normalize the column; since the
length of a Gaussian vector is typically quite close to its mean, this normaliza-
tion should not be too different from just dividing by the deterministic quantity
√

n.
In this section, we will give the proof of the “if” part of Theorem 2.10 only;

that is, we will show that it is possible to approximate the entries of the first
o
(

n
log(n)

)
columns of a random orthogonal matrix, in probability, by indepen-

dent Gaussians.
Recall the setting of Theorem 2.10: Yn = [yi j]n

i, j=1 is a matrix of i.i.d. stan-
dard Gaussian random variables and Γn = [γi j]n

i, j=1 is the matrix obtained by
performing the Gram–Schmidt process on Yn. The random variable εn(m) is
defined by

εn(m) = max
1≤i≤n
1≤ j≤m

∣∣∣√nγi j − yi j

∣∣∣,
and Theorem 2.10 is the statement that εn(m) tends to zero in probability if and
only if m = o

(
n

log(n)

)
.

The bulk of the proof of Theorem 2.10 is contained in the following tail
inequality for εn(m).

Proposition 2.19 Suppose that r ∈
(
0, 1

4

)
, s, t > 0, and m ≤ nr

2 . Then

P [εn(mn) ≥ r(s + t) + t] ≤ 2me−
nr2

2 +
nm
s

√
2
π

e−
s2
2 + mneπ

( e
2

)− m
2

+ mneπe−
nt2
8m .

Assuming the Proposition, let t > 0 be fixed and take

r =
1

log(n)
s = (log(n))3/4 m̃n =

⌈
δn

log(n)

⌉
,

with δ = min
{
1, t2

24

}
. Then for n large enough, r(s + t) + t < 2t, and so for any

mn = o
(

n
log(n)

)
,

P [εn(mn) ≥ 2t] ≤ P [εn(m̃n) ≥ 2t]

≤ 4
(

n
log(n)

)
e−

n
2(log(n))2 +

2n2

log(n)
e−

(log(n))
3
2

2

+
2eπn2

log(n)

( e
2

)− δn
2 log(n)

+
eπn2

log(n)
e−3 log(n),
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which tends to zero as n tends to infinity.

Proof of Proposition 2.19 We begin by introducing a bit more notation. Let
y j denote the jth column of Yn, and let γ j denote the jth column of Γn. Given
γ1, . . . ,γ j−1, let

w j := y j − ∆ j ∆ j :=
j−1∑
k=1

γkγ
T
k y j,

so that γ j =
w j

‖w j‖
. For convenience, take ∆1 = 0. Finally, let

L j :=

∣∣∣∣∣∣∣
√

n∥∥∥w j

∥∥∥ − 1

∣∣∣∣∣∣∣ .
Now observe that

εn(m) = max
1≤ j≤m

∥∥∥√nγ j − y j

∥∥∥
∞

= max
1≤ j≤m

∥∥∥∥∥∥∥
√

nw j∥∥∥w j

∥∥∥ − y j

∥∥∥∥∥∥∥
∞

= max
1≤ j≤m

∥∥∥∥∥∥∥
 √n∥∥∥w j

∥∥∥ − 1

 (y j − ∆ j) − ∆ j

∥∥∥∥∥∥∥
∞

≤

(
max
1≤ j≤m

L j

) (
max
1≤ j≤m

∥∥∥y j

∥∥∥
∞

+ max
1≤ j≤m

∥∥∥∆ j

∥∥∥
∞

)
+ max

1≤ j≤m

∥∥∥∆ j

∥∥∥
∞
.

It follows that

P [εn(m) ≥ r(s + t) + t]

≤ P

[
max
1≤ j≤m

L j ≥ r
]

+ P

[
max
1≤ j≤m

∥∥∥y j

∥∥∥
∞
≥ s

]
+ P

[
max
1≤ j≤m

∥∥∥∆ j

∥∥∥
∞
≥ t

]
.

(2.11)

To estimate the first term,

P

[
max
1≤ j≤m

L j ≥ r
]
≤ m max

1≤ j≤m
P
[
L j ≥ r

]
= m max

1≤ j≤m
P


∣∣∣∣∣∣∣
√

n∥∥∥w j

∥∥∥ − 1

∣∣∣∣∣∣∣ ≥ r


= m max

1≤ j≤m

P  √n∥∥∥w j

∥∥∥ ≤ 1 − r

 + P

 √n∥∥∥w j

∥∥∥ ≥ 1 + r

 .
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On
(
0, 1

4

)
, 1

(1−r)2 ≥ 1 + 2r, and so for each j,

P

 √n∥∥∥w j

∥∥∥ ≤ 1 − r

 = P


∥∥∥w j

∥∥∥2

n
≥

1
(1 − r)2

 ≤ P

∥∥∥w j

∥∥∥2

n
≥ 1 + 2r

 .
Since w j is a projection of the standard Gaussian vector y j,

∥∥∥w j

∥∥∥ ≤ y j, and so

P


∥∥∥w j

∥∥∥2

n
≥ 1 + 2r

 ≤ P

∥∥∥y j

∥∥∥2

n
≥ 1 + 2r


= P

[
y2

1 j + · · · + y2
n j ≥ n(1 + 2r)

]
≤ e−λn(1+2r)

(
E[eλZ2

]
)n

for any λ > 0, where Z is a standard Gaussian random variable. The final
quantity on the right is given by

(
E[eλZ2

]
)n

=
1

(1 − 2λ)
n
2
.

Taking λ = 1
2 −

1
2(2r+1) then gives that

P


∥∥∥w j

∥∥∥2

n
≥ 1 + 2r

 ≤ exp
{
−n

(
r −

1
2
− log

(
1 + 2r

2

))}
≤ e

nr2
2

for r ∈
(
0, 1

4

)
.

Consider next

P

 √n∥∥∥w j

∥∥∥ ≥ 1 + r

 = P


∥∥∥w j

∥∥∥2

n
≤

1
(1 + r)2

 ≤ P

∥∥∥w j

∥∥∥2

n
≤ 1 − r

 ,
since 1

(1+r)2 ≤ 1 − r for r ∈
(
0, 1

4

)
.

Recall that w j is the orthogonal projection of y j onto
〈
γ1, . . .γ j−1

〉⊥
; con-

ditional on (y1, . . . , y j−1), w j is a standard Gaussian random vector in the
(n − j + 1)-dimensional subspace

〈
γ1, . . .γ j−1

〉⊥
⊆ Rn. It follows that

∥∥∥w j

∥∥∥2 d
= Z2

1 + · · · + Z2
n− j+1,

where the Zi are i.i.d. standard Gaussian random variables. Now proceeding
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similarly to the argument above, for 1 ≤ j ≤ m, and any λ > 0,

P


∥∥∥w j

∥∥∥2

n
≤ 1 − r

 = P
[
Z2

1 + · · · + Z2
n− j+1 ≤ n(1 − r)

]
≤ P

[
Z2

1 + · · · + Z2
n−m ≤ n(1 − r)

]
= eλn(1−r)

(
E[e−λZ2

]
)n−m

= eλn(1−r)
(

1
√

1 + 2λ

)n

Taking λ = n−m
2n(1−r) −

1
2 gives that

P


∥∥∥w j

∥∥∥2

n
≤ 1 − r

 ≤ exp
{

nr
2
−

m
2

+
n − m

2
log

(
n − m

n(1 − r)

)}
,

and for r ∈
(
0, 1

4

)
and m ≤ nr

2 , this last expression is bounded by e−
nr2

2 as well.
Together then, we have that

P

[
max
1≤ j≤m

L j ≥ r
]
≤ 2me−

nr2
2 . (2.12)

The second term in (2.11) is almost trivial: since the y j are i.i.d. Gaussian
vectors in Rn, if Z is a standard Gaussian random variable, then

P

[
max
1≤ j≤m

∥∥∥y j

∥∥∥
∞
≥ s

]
≤ nmP [|Z| ≥ s] ≤

nm
s

√
2
π

e−
s2
2 . (2.13)

Finally, consider the random variable ∆ j = P j−1y j, where P j =
∑ j−1

k=1 γkγ
T
k is

the matrix of orthogonal projection onto
〈
γ1, . . . ,γ j−1

〉
. Since P j depends only

on y1, . . . , y j−1, P j and y j are independent. Moreover, by the Gauss–Gram–
Schmidt construction of Haar measure, (γ1, . . . ,γ j−1) are distributed as the
first j − 1 columns of a Haar-distributed random matrix, and so

P j
d
= U(I j−1 ⊕ On− j+1)UT ,

where U is distributed according to Haar measure on O (n) and is indepen-
dent of y j. Using the independence together with the rotation invariance of the
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distribution of y j, it follows that

P jy j
d
= U



Z1
...

Z j−1

0
...

0


=: Uz j,

where Z1, . . . ,Z j−1 are i.i.d. Gaussian random variables, independent of U.
Conditioning now on the Zi, let Ri ∈ O (n) be such that Riz j = (Z2

1+· · ·+Z2
j−1)e1;

it follows by the rotational invariance of Haar measure that, conditional on the
Zi,

Uz j
d
= URiz j = (Z2

1 + · · · + Z2
j−1)u1.

It thus follows that for each j ∈ {2, . . . ,m},

P
[∥∥∥∆ j

∥∥∥
∞
≥ t

]
= P

‖θ‖∞ ≥ t√
Z2

1 + · · · + Z2
j−1

 ,
where θ is uniformly distributed on the unit sphere Sn−1 ⊆ Rn. Lévy’s lemma
(see Section 5.1) gives that for a single coordinate θk of a uniform random
vector on Sn−1,

P[|θk | > t] ≤ eπ−
nt2
4 .

Conditioning on the Zi, Lévy’s lemma thus gives that

P

[
max
1≤ j≤m

∥∥∥∆ j

∥∥∥ ≥ t
]
≤ nmE

P
 |θ1| ≥

t√
Z2

1 + · · · + Z2
m

∣∣∣∣∣∣∣∣∣ Z1, . . . ,Zm




≤ nmE

exp

π − nt2

4
∑m

k=1 Z2
k


 .

Estimating as above,

P

 m∑
k=1

Z2
k ≥ x0

 ≤ exp
{

m
2
−

x0

2
−

m
2

log
(

m
x0

)}
for x0 > m, and so

E

exp

− nt2

4
∑m

k=1 Z2
k


 ≤ e−

nt2
4x0 + exp

{
m
2
−

x0

2
−

m
2

log
(

m
x0

)}
,
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and choosing x0 = 2m gives that

nmeπE

exp

− t2

4
∑m

k=1 Z2
k


 ≤ nmeπ−

nt2
8m + nm exp

{
π −

m
2

(
1 − log(2)

)}
.

This completes the proof of the Proposition.
�

2.4 Arbitrary projections

A deficiency of Theorem 2.9 is that it applies only to entries in a principal
submatrix of U. Thus one may conclude that o(n) entries of U can be simul-
taneously approximated in total variation by i.i.d. Gaussian random variables,
if those entries are those of a p × q principal submatrix with pq = o(n); the
original question assumed no such restriction, and indeed, the fact that Haar
measure is invariant under multiplication by any orthogonal matrix suggests
that this restriction is too strong. The following result overcomes this difficulty,
but in the weaker L1 Kantorovich metric.

Theorem 2.20 (Chatterjee–Meckes) Let U ∈ O (n) be distributed accord-
ing to Haar measure, and let A1, . . . , Ak be n × n matrices over R satisfy-

ing Tr(AiAT
j ) = nδi j; that is,

{
1
√

n Ai

}
1≤i≤k

is orthonormal with respect to the

Hilbert–Schmidt inner product. Define the random vector X by

X := (Tr(A1U),Tr(A2U), . . . ,Tr(AkU))

in Rk, and let Z = (Z1, . . . ,Zk) be a random vector whose components are
independent standard normal random variables. Then for n ≥ 2,

W1(X,Z) ≤

√
2k

n − 1
.

In particular, if Ei j denotes the matrix with 1 as the i- jth entry and zeroes
elsewhere, then choosing the A` to be {

√
nEi j} for some collection of pairs (i, j)

gives that any collection of o(n) entries of U can be simultaneously approxi-
mated (in W1) by i.i.d. Gaussians. However, the theorem is more general: it
may be that all of the entries of U appear in Tr(AiU), for some or all i. Indeed,
the general form of the vector X above is that of a projection of a random ele-
ment of O (n) onto a subspace of Mn(R) of rank k. A Gaussian distribution on
Mn(R) has the property that all of its projections onto lower-dimensional sub-
spaces are also Gaussian; the theorem above can thus be seen as a coordinate-
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free comparison between the Haar measure on O (n) and standard Gaussian
measure on Mn(R).

The proof of Theorem 2.20 makes use of the following framework for prov-
ing multivariate central limit theorems, which is a version of Stein’s method
of exchangeable pairs. For a proof of the theorem and further discussion, see
[18].

Theorem 2.21 Let X be a random vector in Rk and for each ε > 0 let Xε be
a random vector with X d

= Xε , such that

lim
ε→0

Xε = X

almost surely. Let Z be a standard normal random vector in Rk. Suppose there
are deterministic λ(ε) and σ2 > 0, and a random matrix F such that the fol-
lowing conditions hold.

1.
1
λ(ε)
E

[
(Xε − X)

∣∣∣X] L1
−−−→
ε→0

−X.

2.
1

2λ(ε)
E

[
(Xε − X)(Xε − X)T |X

] L1
−−−→
ε→0

σ2Ik + E
[
F
∣∣∣X]

.

3. For each ρ > 0,

lim
ε→0

1
λ(ε)
E

[∣∣∣Xε − X
∣∣∣21{|Xε−X|2>ρ}

]
= 0.

Then

W1(X, σZ) ≤
1
σ
E‖F‖H.S . (2.14)

The idea of the theorem is the following. Suppose that the random vector X
has “continuous symmetries” which allow one to make a small (parametrized
by ε) random change to X which preserves its distribution. If X were exactly
Gaussian and this small random change could be made so that (X, Xε) were
jointly Gaussian, then we would have (for some parametrization of the size of
the change) that Xε

d
=
√

1 − ε2X + εY for X and Y independent. The conditions
of the theorem are approximate versions of what happens, up to third order, in
this jointly Gaussian case.

The other technical tool needed for the proof of Theorem 2.20 is the fol-
lowing lemma, which gives formulae for the fourth-order mixed moments of
entries of a random orthogonal matrix. The proof uses the same ideas as those
in Example 2.1, and is a good exercise in symmetry exploitation and tedious
calculation.
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Lemma 2.22 If U =
[
ui j

]n

i, j=1
is an orthogonal matrix distributed according

to Haar measure, then E
[∏

uki j

i j

]
is non-zero if and only if the number of en-

tries from each row and from each column is even. The fourth-degree mixed
moments are as follows: for all i, j, r, s, α, β, λ, µ,

E
[
ui jursuαβuλµ

]
= −

1
(n − 1)n(n + 2)

[
δirδαλδ jβδsµ + δirδαλδ jµδsβ + δiαδrλδ jsδβµ

+ δiαδrλδ jµδβs + δiλδrαδ jsδβµ + δiλδrαδ jβδsµ

]
+

n + 1
(n − 1)n(n + 2)

[
δirδαλδ jsδβµ + δiαδrλδ jβδsµ + δiλδrαδ jµδsβ

]
.

(2.15)

Proof of Theorem 2.20 We begin by constructing an exchangeable pair (U,Uε)
of random orthogonal matrices. Let U be a Haar-distributed element of O (n),
and let Aε be the rotation

Aε =

√1 − ε2 ε

−ε
√

1 − ε2

 ⊕ In−2 = In +

− ε2

2 + δ ε

−ε − ε
2

2 + δ

 ⊕ 0n−2,

where δ = O(ε4). Let V be Haar-distributed in O (n), independent of U, and
define

Uε = VAεVT U.

That is, Uε is a translation of U within O (n) by a rotation of size arcsin(ε) in a
random two-dimensional subspace of Rk, and in particular, it follows from the
translation-invariance of Haar measure that Uε

d
= U. Finally, let

Xε = (Tr(A1Uε), . . . ,Tr(AkUε)).

Let K denote the first two columns of V and

C2 =

[
0 1
−1 0

]
.

Then

Uε − U =

[(
−ε2

2
+ O(ε4)

)
KKT + εQ

]
U, (2.16)

where Q = KC2KT . The entries of the matrices KKT and Q are

(KKT )i j = ui1u j1 + ui2u j2 (Q)i j = ui1u j2 − ui2u j1.
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It then follows from Example 2.1 and Lemma 2.22 that

E
[
KKT ]

=
2
n

In E
[
Q
]

= 0,

thus

lim
ε→0

n
ε2E

[
(Xε − X)i

∣∣∣U]
= lim

ε→0

n
ε2E

[
Tr[Ai(Uε − U)]

∣∣∣U]
= lim

ε→0

n
ε2

[(
−
ε2

2
+ O(ε4)

)
E

[
Tr(AiKKT U)

∣∣∣U]
+ εE

[
Tr(AiQU)

∣∣∣U]]
= −Xi.

Condition 1. of Theorem 2.21 is thus satisfied with λ(ε) = ε2

n . Condition 3.
is immediate from the fact that |Xε−X|2

λ(ε) is bounded independent of ε and Xε

converges pointwise to X.
The random matrix F of condition 2. is computed as follows. For notational

convenience, write Ai = A = (apq), A j = B = (bαβ), and U = (ui j). By (2.16),

lim
ε→0

n
2ε2E

[
(Xε − X)i(Xε − X) j

∣∣∣∣U]
=

n
2
E

[
Tr(AQU) Tr(BQU)

∣∣∣U]
=

n
2
E

 ∑
p,q,r,α,β,γ

apqbαβurpuγαqqrqβγ

∣∣∣∣∣∣∣∣ U


=
n
2
E

 ∑
p,q,r,α,βγ

apqbαβurpuγα

(
2

n(n − 1)

)
(δqβδrγ − δqγδrβ)


=

1
(n − 1)

E
[
〈UA,UB〉H.S . − Tr(AUBU)

]
=

1
(n − 1)

E
[
〈A, B〉H.S . − Tr(UAUB)

]
=

1
(n − 1)

[
nδi j − Tr(UAUB)

]
.

(2.17)

Thus

F =
1

(n − 1)
E

[[
δi j − Tr(AiUA jU)

]k

i, j=1

∣∣∣∣X]
.

Claim: If n ≥ 2, then E
[
Tr(AiUA jU) − δi j

]2
≤ 2 for all i and j.
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With the claim, for n ≥ 2,

E‖F‖H.S . ≤
√
E‖F‖2H.S . ≤

√
2k

n − 1
,

thus completing the proof.

To prove the claim, first observe that Lemma 2.22 implies

E
[
Tr(AiUA jU)

]
=

1
n

〈
Ai, A j

〉
= δi j.

Again writing Ai = A and A j = B, applying Lemma 2.22 yields

E
[

Tr(AUBU)
]2

= E


∑

p,q,r,s
α,β,µ,λ

aspaµαbqrbβλupqursuαβuλµ


= −

2
(n − 1)n(n + 2)

[
Tr(AT ABT B) + Tr(ABT ABT ) + Tr(AAT BBT )

]
+

n + 1
(n − 1)n(n + 2)

[
2 〈A, B〉H.S . + ‖A‖

2
H.S .‖B‖

2
H.S .

]
.

Since the Hilbert–Schmidt norm is submultiplicative,

Tr(AT ABT B) ≤ ‖AT A‖H.S .‖BT B‖H.S . ≤ ‖A‖2H.S .‖B‖
2
H.S . = n2,

and the other two summands of the first line are bounded by n2 in the same
way. Also,

2 〈A, B〉H.S . + ‖A‖
2
H.S .‖B‖

2
H.S . = n2(1 + 2δi j),

Thus

E
[
Tr(AiUA jU) − δi j

]2
≤
−6n2 + (n + 1)n2(1 + 2δi j) − (n − 1)n(n + 2)δi j

(n − 1)n(n + 2)
≤ 2.

�

The following is the analog of Theorem 2.20 for the unitary group; the proof
is essentially the same, using the unitary analog of Lemma 2.22

Theorem 2.23 (Chatterjee–Meckes) Let U ∈ U (n) be distributed accord-
ing to Haar measure, and let A1, . . . , Ak be n × n matrices over C satisfying
Tr(AiA∗j) = nδi j. Define the random vector X by

X := (Tr(A1U),Tr(A2U), . . . ,Tr(AkU))

in Rk, and let Z = (Z1, . . . ,Zk) be a random vector whose components are



68 Distribution of the entries

independent standard complex normal random variables. There is a constant
c, independent of n, such that

W1(X,Z) ≤
ck
n
.

Remark: The constant is asymptotically given by
√

2; for n ≥ 4, it can be
taken to be 3.

Notes and References

The paper [35] gives an extensive history of Borel’s lemma. For thorough dis-
cussions of metrics on probability measures, their relationships, and terminol-
ogy, see the books by Dudley [39] or Villani [104].

Section 2.2 follows the derivation of the density of a submatrix given in
Eaton [41]. For more on Wishart matrices, see Muirhead’s book [87], and for
notation, alternate definitions, and generalizations of the matrix-variate beta
distribution, see [29].

The univariate version of Theorem 2.20, namely a central limit theorem for
Tr(AU) where A is a fixed matrix and U is Haar-distributed on O (n), was
first proved by d’Aristotile–Diaconis–Newman [27] as a step in proving the
following.

Theorem 2.24 (d’Aristotile–Diaconis–Newman) Let U be a Haar-distributed
matrix in O (n). Let {β1, . . . , βkn } be a subset of the entries of U, ordered lexi-
cographically. For ` ∈ {1, . . . , kn} and t ∈ [0, 1], let

S (n)
`

=

√
n
kn

∑̀
j=1

β j Xn(t) = S (n)
[knt].

If kn ↗ ∞, then Xn =⇒ W, a standard Brownian motion, as n→ ∞.

Other approaches to the univariate case appeared in [77] and [65]. An al-
ternative approach to weak convergence in the multivariate case was given in
[22].

The idea of using Stein’s method together with infinitesimal random rota-
tions was first used by Stein in [98] to get fast rates of convergence to a Gaus-
sian distribution for Tr(Uk), for k ∈ N fixed and U distributed according to
Haar measure on O (n). Slightly better bounds were obtained simultaneously
by Johansson [61], and so Stein’s argument remained a hidden gem for sev-
eral years (it can now be found online in the Stanford statistics department’s
repository of technical reports).
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Lemma 2.22 gives a formula for computing mixed moments up to order four
of entries of a random orthogonal matrix by exploiting the symmetries of Haar
measure; the analog for the unitary group can be found in [18]. A systematic
approach called the Weingarten calculus for computing moments of all orders
was developed by B. Collins [20] in the unitary case and extended to all the
classical compact groups by Collins and Śniady [21]. This approach makes
heavy use of the representation theory of the classical groups, in particular ex-
ploiting Schur–Weyl duality and its analogs, and was the basis for the approach
to weak convergence of Rk-valued linear functions on the groups given in [22].



3
Eigenvalue distributions: exact formulas

3.1 The Weyl integration formula

Suppose U is a Haar-distributed random matrix. Then U has eigenvalues, all of
which lie on the unit circle S1 ⊆ C. Since U is random, its set of eigenvalues is
a random point process; that is, it is a collection of n random points on S1. The
eigenvalue process of a Haar-distributed random matrix has many remarkable
properties, the first of which is that there is an explicit formula (due to H. Weyl)
for its density. The situation is simplest for random unitary matrices.

Theorem 3.1 (Weyl integration formula onU (n)) The unordered eigenvalues
of an n × n random unitary matrix have eigenvalue density

1
n!(2π)n

∏
1≤ j<k≤n

|eiθ j − eiθk |2,

with respect to dθ1 · · · dθn on [0, 2π)n. That is, for any g : U (n)→ R with

g(U) = g(VUV∗) for any U,V ∈ U (n) ,

(i.e., g is a class function), if U is Haar-distributed on U (n), then

Eg(U) =
1

n!(2π)n

∫
[0,2π)n

g̃(θ1, . . . , θn)
∏

1≤ j<k≤n

|eiθ j − eiθk |2dθ1 · · · dθn,

where g̃ : [0, 2π)n → R is the (necessarily symmetric) expression of g(U) as a
function of the eigenvalues of U.

The proof of the Weyl integration formula makes heavy use of the Lie group
structure of U (n). In this section, we attempt to give a reasonably accessible
treatment of the integration formula, stating some background results without
proof and glossing over some details; see the end-of-chapter notes for further
references.

70
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As a preliminary, we state the following Fubini-like theorem in the Lie group
context. Recall that if G is a group and H ⊆ G is a subgroup, then the quotient
G/H is the set of all cosets gH, where g ∈ G. If G is a locally compact Lie
group and H is a closed subgroup, then G/H can be endowed with the quotient
topology, which makes G/H into a locally compact Hausdorff space. Recall
also from Section 1.1 that every compact Lie group has a Haar measure; that is,
a (unique) probability measure invariant under both left and right translations.

Proposition 3.2 Let G be a compact Lie group and let H be a closed sub-
group; let µG and µH denote the Haar measures on G and H, respectively.
There exists a regular Borel measure µG/H on G/H which is invariant under
left-translation by elements of G, and which may be normalized such that for
any continuous ϕ : G → R,∫

G
ϕ(g)dµG(g) =

∫
G/H

∫
H
ϕ(gh)dµH(h)dµG/H(gH). (3.1)

Observe that we have implicitly used the fact that gH 7→
∫

H ϕ(gh)dµH(h)
is well-defined, which follows from the translation invariance of µH: for any
h̃ ∈ H, ∫

H
ϕ(gh̃h)dµH(h) =

∫
H
ϕ(gh)dµH(h).

Corollary 3.3 Let G and H be as above, and suppose that ϕ : G → R is
constant on cosets; i.e., ϕ(g1) = ϕ(g2) for all g1, g2 such that g1 = g2h for
some h ∈ H. Then ∫

G
ϕ(g)dµG(g) =

∫
G/H

ϕ(g)dµG/H(gH),

where the integrand ϕ(g) on the right-hand side is the common value of ϕ on
the coset gH.

Proof For all h ∈ H, ϕ(gh) = ϕ(g) since ϕ is constant on cosets, and so the
inner integrand on the right-hand side of (3.1) is constant, and µH was chosen
to be a probability measure. �

The central idea of the proof of the Weyl integration formula is the follow-
ing.

Lemma 3.4 Let T ⊆ U (n) denote the diagonal elements of U (n), and let
T′ ⊆ T denote those elements of T with distinct diagonal entries. Let U (n)′ ⊆
U (n) denote the n×n unitary matrices with distinct eigenvalues. Then the map

ψ : (U (n) /T) × T′ → U (n)′

(UT,Θ) 7→ UΘU−1
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is a well-defined n!-to-1 mapping onto U (n)′ with everywhere bijective differ-
ential dψ, and if Θ = diag(eiθ1 , . . . , eiθn ), then

| det dψ(UT,Θ)| =
∏

1≤ j<k≤n

|eiθ j − eiθk |2.

Proof To see that ψ is well-defined, suppose that UT = ŨT; i.e., that there is
Θ̃ ∈ T such that U = ŨΘ̃. Then for any Θ ∈ T′,

UΘU−1 = ŨΘ̃ΘΘ̃−1Ũ−1 = ŨΘŨ−1,

since the diagonal matrices Θ, Θ̃ commute.
Next, observe that if U ∈ U (n)′ with distinct eigenvalues λ1, . . . , λn, then

for any permutation σ ∈ S n, there is Vσ ∈ U (n) such that

U = Vσ diag(λσ(1), . . . , λσ(n))V−1
σ ,

and so U has (at least) n! distinct preimages (VσT,diag(λσ(1), . . . , λσ(n))). More-
over, if V,W ∈ U (n) are such that

V diag(λσ(1), . . . , λσ(n))V−1 = U = W diag(λσ(1), . . . , λσ(n))W−1,

then the k-th columns of both V and W are eigenvectors of U with eigenvalue
λσ(k). Since U has n distinct eigenvalues, its eigenspaces are one-dimensional,
and so the k-th columns of V and W can only differ by multiplication by a unit
modulus complex number ωk. In other words,

W = V diag(ω1, . . . , ωn),

and since diag(ω1, . . . , ωn) ∈ T, it follows that VT = WT. That is, U has
exactly n! preimages under ψ.

It remains to compute the differential dψ.
A curve γ : [0, 1]→ T with γ(0) = I has the form

γ(t) = diag(eiθ1(t), . . . , eiθn(t)),

where the θ j(t) are arbitrary smooth functions of t, so that

γ′(0) = diag(iθ′1(0), . . . , iθ′n(0));

that is, TIn (T) ⊆ TIn (U (n)) is exactly the subspace of diagonal elements:

TIn (T) = {diag(iρ1, . . . , iρn) : ρ1, . . . , ρn ∈ R} =: t.

Recall from Section 1.1 that the Lie algebra of U (n) itself is

u(n) = {X ∈ Mn(C) : X + X∗ = 0} .

The map π : U (n)→ U (n) /T with π(U) = UT induces a surjective linear map
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dπIn : TIn (U (n)) → TInT(U (n) /T) whose kernel is exactly t, and so its image
can be identified with orthogonal complement of t in u:

TInT(U (n) /T) �
{
X ∈ Mn(C) : X + X∗ = 0, X j j = 0∀ j

}
=: p.

Now, to compute dψ itself, we must compute d
dtψ◦γ(t)|t=0 for smooth curves

γ : [0, 1] → (U (n) /T) × T′ with arbitrary initial directions. We first consider
the curve

γ1(t) = (UetZT,Θ),

where Z is an n × n matrix over C with Z + Z∗ = 0 and Z j j = 0 for each j.
Then γ1 has γ1(0) = (UT,Θ) and γ′1(0) = (Z, 0) (it is customary to identify
T(UT,Θ)(U (n) /T × T′) with p ⊕ t),

ψ(γ1(t)) = UetZΘe−tZU−1,

and

dψ(UT,Θ)(Z, 0) =
d
dt
ψ(γ1(t))|t=0

= UZΘU−1 − UΘZU−1

=
[
UΘU−1

] (
U

[
Θ−1ZΘ − Z

]
U−1

)
.

In the orthogonal direction, consider the curve γ2 : [0, 1] → (U (n) /T) × T′

defined by

γ2(s) = (UT,ΘesΘ′ ).

Then γ2(0) = (UT,Θ), γ′2(0) = (0,Θ′), and

dψ(UT,Θ)(0,Θ′) =
d
ds
ψ ◦ γ2(s)|s=0 = UΘΘ′U−1 = UΘU−1

(
UΘ′U−1

)
.

Together then,

dψ(UT,Θ)(Z,Θ′) = UΘU−1
(
U

[
Θ−1ZΘ − Z + Θ′

]
U−1

)
.

Identifying TUΘU−1 (U (n)′) with u, one would more typically write just

dψ(UT,Θ)(Z,Θ′) = U
[
Θ−1ZΘ − Z + Θ′

]
U−1.

Since multiplication by a unitary matrix is an isometry of Mn(C), it follows
that

| detψ(UT,Θ)| =
∣∣∣ det AΘ ⊕ I

∣∣∣ =
∣∣∣ det AΘ

∣∣∣,
where AΘ(Z) = Θ−1ZΘ − Z.
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To finally actually compute the determinant, it is easier to consider the com-
plexification of p: the space p itself is a real vector space, but if (X1, . . . , XN) is
a basis, then we may instead consider the complex vector space

pC := {z1X1 + · · · + zN Xn : z1, . . . , zn ∈ C} .

The matrices (X1, . . . , XN) are then a basis of pC, and any linear map on p can
be extended to a linear map on pC, whose determinant is the same as that of
the original map.

It is an easy exercise that the complexification pC is simply those matrices
in Mn(C) with zeroes on the diagonal; this space has orthonormal basis E jk

( j , k), with a one in the j-k position and zeroes elsewhere. With respect to
this basis, the operator AΘ is diagonal:

AΘ(E jk) =
(
ei(θ j−θk) − 1

)
E jk.

It follows that

| detψ(UT,Θ)| =
∏
j,k

∣∣∣ei(θ j−θk) − 1
∣∣∣ =

∏
1≤ j<k≤n

∣∣∣eiθ j − eiθk
∣∣∣2 ,

which completes the proof of the lemma. �

We now complete the proof of Weyl’s integration formula.

Proof of Theorem 3.1 Since ψ is an n!-to-1 local diffeomorphism, using ψ to
make a change of variables gives∫

U(n)′
g(U)dµU(n)′ (U)

=
1
n!

∫
T′

∫
U(n)/T

g(ψ(UT,Θ))| det dψ(UT,Θ)|dµU(n)/T(UT)dµT′ (Θ),

where each of the measures is the invariant measure on the appropriate space,
as described in Proposition 3.2.

It is easy to see that T \ T′ and U (n) \ U (n)′ have measure zero, since their
dimensions are strictly smaller than those of the full groups, and so we may
instead write∫

U(n)
g(U)dµU(n)(U)

=
1
n!

∫
T

∫
U(n)/T

g(ψ(UT,Θ))| det dψ(UT,Θ)|dµU(n)/T(UT)dµT(Θ).

From Lemma 3.4,

| det dψ(UT,Θ)| =
∏

1≤ j<k≤n

|eiθ j − eiθk |2,
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and since g was assumed to be a class function,

g(ψ(UT,Θ)) = g(UΘU−1) = g(Θ) = g̃(θ1, . . . , θn),

where g̃ is as in the statement of the theorem and Θ = diag(eiθ1 , . . . , eiθn ).
Since µU(n)/T is a probability measure, and dµT = 1

(2π)n dθ1 · · · dθn, this com-
pletes the proof.

�

The factor
∏

1≤ j<k≤n |eiθ j − eiθk |2 is the norm-squared of a Vandermonde de-
terminant. Observe that for any given pair ( j, k), |eiθk − eiθ j |2 is zero if θ j = θk

(and small if they are close), but |eiθk−eiθ j |2 is 4 if θ j = θk +π. This produces the
effect alternatively known as “eigenvalue repulsion” or “eigenvalue rigidity”:
each pair of eigenvalues repel each other, so that the collection of points is very
evenly spaced. This is clearly visible in simulations, even for relatively small
matrices. In the picture on the right in Figure 3.1, 80 points were dropped uni-
formly and independently (thus there is no repulsion); there are several large
clumps of points close together, and some largeish gaps. The picture on the
right is of the eigenvalues of a random 80 × 80 unitary matrix; one can clearly
see that they are more regularly spaced around the circle.

There are integration formulae for the other matrix groups as well, although
some details are slightly more complicated. Firstly, recall the trivial eigen-
values: each matrix in SO (2n + 1) has 1 as an eigenvalue, each matrix in
SO− (2n + 1) has −1 as an eigenvalue, and each matrix in SO− (2n + 2) has
both −1 and 1 as eigenvalues. The remaining eigenvalues of matrices in SO (n)
or Sp (2n) occur in complex conjugate pairs. For this reason, when discussing

Figure 3.1 On the left are the eigenvalues of an 80 × 80 random unitary matrix;
on the right are 80 i.i.d. uniform random points.
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SO (n), SO− (n), or Sp (2n), the eigenvalue angles corresponding to the eigen-
values in the open upper half-circle are considered to be the nontrivial ones and
one normally considers the eigenvalue process restricted to that set. For U (n),
all the eigenvalue angles are considered nontrivial; there are no automatic sym-
metries in this case.

The following result gives the analogues of the formula in Theorem 3.1 for
the remaining groups.

Theorem 3.5 Let U be a Haar-distributed random matrix in S , where S
is one of SO (2n + 1), SO (2n), SO− (2n + 1), SO− (2n + 2), Sp (2n). Then a
function g of U which is invariant under conjugation of U by a fixed orthogonal
(in all but the last case) or symplectic (in the last case) matrix is associated as
above with a function g̃ : [0, π)n → R (of the non-trivial eigenangles) which is
invariant under permutations of coordinates, and if U is distributed according
to Haar measure on G, then

Eg(U) =

∫
[0,π)n

g̃dµW
G ,

where the measures µW
G on [0, π)n have densities with respect to dθ1 · · · dθn as

follows.

G µW
G

SO (2n)
2

n!(2π)n

∏
1≤ j<k≤n

(
2 cos(θk) − 2 cos(θ j)

)2

SO (2n + 1)
2n

n!πn

∏
1≤ j≤n

sin2
(
θ j

2

) ∏
1≤ j<k≤n

(
2 cos(θk) − 2 cos(θ j)

)2

SO− (2n + 1)
2n

n!πn

∏
1≤ j≤n

cos2
(
θ j

2

) ∏
1≤ j<k≤n

(
2 cos(θk) − 2 cos(θ j)

)2

Sp (2n)
SO− (2n + 2)

2n

n!πn

∏
1≤ j≤n

sin2
(
θ j

) ∏
1≤ j<k≤n

(
2 cos(θk) − 2 cos(θ j)

)2

So as not to spoil the reader’s fun, we will show how to modify the proof of
the unitary case for the case of SO (2n) and leave the remaining formulae as
exercises.

Proof of the Weyl integration formula for SO (2n) If U ∈ SO (2n), then there
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are V ∈ SO (2n) and angles {θ1, . . . , θn} ⊆ [0, π] such that

U = V



cos θ1 ± sin(θ1)
∓ sin(θ1) cos(θ1)

. . .

cos(θn) ± sin(θn)
∓ sin(θn) cos(θn)


V−1; (3.2)

the eigenvalues of U are the complex conjugate pairs {e±iθ1 , . . . , e±iθn }.
Let T denote the set of all block diagonal rotations as in (3.2), T′ ⊂ T those

matrices for which the θ j are all distinct and different from 0 and π, and let
SO (2n)′ ⊆ SO (2n) be the subset of SO (2n) with distinct eigenvalues, different
from 1 and −1. Define a map

ψ : (SO (2n) /T) × T′ → SO (2n)′ .

(UT,R) 7→ URU−1

Then ψ is a 2n−1n!-to-1 covering of SO (2n)′: each U ∈ SO (2n) has 2n−1n!
distinct preimages, corresponding to the n! possible permutations of the 2 × 2
blocks and the 2n−1 possible reorderings of the bases within all but the last of
the corresponding 2-dimensional subspaces (the last one is then forced so as to
remain within SO (2n)).

As before, ψ is used to make a change of variables, and the crucial ingredient
in the integration formula is the determinant of dψ. Recall that

so(2n) := TIn (SO (2n)) = {X ∈ M2n(R) : X + XT = 0}.

If γ : [0, 1]→ T has the form

γ(s) =



cos(θ1(s)) ± sin(θ1(s))
∓ sin(θ1(s)) cos(θ1(s))

. . .

cos(θn(s)) ± sin(θn(s))
∓ sin(θn(s)) cos(θn(s))


(with the choice of signs consistent as s varies), then

γ′(0) =



0 ±θ′1(0)
∓θ′1(0) 0

. . .

0 ±θ′n(0)
∓θ′n(0) 0


,
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and so

t := TIn (T) =

{[
0 ρ1

−ρ1 0

]
⊕ · · · ⊕

[
0 ρn

−ρn 0

]
: ρ1, . . . , ρn ∈ R

}
.

The map π : SO (2n) → SO (2n) /T with π(U) := UT induces a surjective
linear map dπIn : TIn (SO (2n))→ TInT(SO (2n) /T) with kernel t, whose image
is therefore isomorphic to the orthogonal complement

p :=
{

X ∈ M2n(R) : X + XT = 0,
[
X2 j−1,2 j−1 X2 j−1,2 j

X2 j,2 j−1 X2 j,2 j

]
=

[
0 0
0 0

]
, j = 1, . . . , n

}
.

Computing the tangent vectors at 0 to curves γ1(t) = (UetZT,R) and γ2(s) =

(UT,ResR′ ) as in the unitary case shows that

dψ(UT,R)(Z,R′) = U
[
(AR ⊕ I)(Z,R)

]
U−1,

where AR : p → p is given by AR(Z) = R−1ZR − Z, and we have identified
T(UR,R)(SO (n) /T × T′) with p ⊕ t and TURU−1 (SO (n)′) with so(2n). We thus
have that

| det dψ(UT,R)| = | det AR|.

Unfortunately, there is no obvious basis in which AR is diagonal, and so com-
puting | det AR| requires a few linear-algebraic tricks. Firstly, it is once again
simpler to compute in the complexification

pC =

{
X ∈ M2n(C) : X + XT = 0,

[
X2 j−1,2 j−1 X2 j−1,2 j

X2 j,2 j−1 X2 j,2 j

]
=

[
0 0
0 0

]
, j = 1, . . . , n

}
,

of p. Note that while in the unitary case, complexifying p removed the condi-
tion X + X∗ = 0, in the orthogonal case, the condition X + XT = 0 remains.

Next, we change bases on C2n to diagonalize the elements of T: let

C :=
[
1 1
i −i

]
⊕ · · · ⊕

[
1 1
i −i

]
,

and let C act on Mn(C) by conjugation. The subspace t, and hence also pC, is
preserved by this action, and

C−1
( [

cos(θ1) sin(θ1)
− sin(θ1) cos(θ1)

]
⊕ · · · ⊕

[
cos(θn) sin(θn)
− sin(θn) cos(θn)

])
C

=

[
eiθ1 0
0 e−iθ1

]
⊕ · · · ⊕

[
eiθn 0
0 e−iθn

]
.

Now, pC has the obvious basis F jk, where F jk has a 1 in the j-k entry, a −1
in the k- j entry and zeroes otherwise (where ( j, k) runs over pairs with j < k
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which are not in any of the 2 × 2 blocks along the diagonal). However, AR is
not diagonal with respect to the basis CF jkC−1, and one more trick is in order.

Observe that if S : Mn(C)→ Mn(C) is defined by

[S X] jk =

X jk, j ≤ k;

−X jk, j > k,

then S commutes with AR (this is easy to check on the basis CE jkC−1 of
Mn(C)).

Exercise 3.6 Let V be a finite-dimensional inner product space and U ⊆ V a
subspace. Let T : V → V such that T (U) = U and let S : V → V commute
with T . Then T (S (U)) = S (U) and

det T |U = det T |S (U).

Applying the exercise to the maps T = AR and S defined above, it follows
that our quarry det AR, when AR is viewed as a map on pC, is the same as det AR

when AR is viewed as a map on

qC :=
{

X ∈ M2n(C) : X − XT = 0,
[
X2 j−1,2 j−1 X2 j−1,2 j

X2 j,2 j−1 X2 j,2 j

]
=

[
0 0
0 0

]
, j = 1, . . . , n

}
.

The subspace qC has basis G jk defined similarly to F jk but with both non-zero
entries equal to 1, and so in particular the subspaces pC and qC are orthogonal.
It follows that det AR when AR is viewed as a map on pC ⊕ qC is the square of
det AR when AR is restricted to pC. The point, of course, is that pC ⊕ qC has
basis E jk, where j , k and ( j, k) is not in any of the 2 × 2 blocks along the
diagonal, and with respect to CE jkC−1, AR is diagonal: if D = C−1RC is the
diagonalization of R by C, then

AR(CE jkC−1) = CD−1C−1(CE jkC−1)CDC−1 −CE jkC−1

=

(
exp

{
i
(
(−1) jθ⌈ j

2

⌉ − (−1)kθd k
2 e

)}
− 1

)
CE jkC−1.

Examining the coefficient above, one can see that for each pair p < q, each
of the four factors ei(±θp±θq) − 1 appears as an eigenvalue exactly twice. Since

|ei(θp+θq) − 1||ei(θp−θq) − 1| = |2 cos(θp) − 2 cos(θq)|,

we finally have that

| det
pC⊕qC

dψ(UT,R)| =
∏

1≤p<q≤n

|2 cos(θp) − 2 cos(θq)|4,
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and so

| det
pC

dψ(UT,R)| =
∏

1≤p<q≤n

|2 cos(θp) − 2 cos(θq)|2. (3.3)

To complete the proof, let g : SO (2n) → R be a class function; since ψ is a
2nn!

2 -to-1 local diffeomorphism,∫
SO(2n)′

g(U)dµSO(2n)′ (U)

=
2

2nn!

∫
T′

∫
SO(2n)/T

g(ψ(UT,R))| det dψ(UT,R)|dµSO(n)/T(UT)dµT′ (R),

where all of the measures are the (normalized) Haar measures on the appro-
priate spaces. As before, the excluded parts of SO (2n) and T are lower dimen-
sional and hence of measure zero, and so we have∫
SO(2n)

g(U)dµSO(2n)(U)

=
2

2nn!

∫
T

∫
SO(2n)/T

g(ψ(UT,R))| det dψ(UT,R)|dµSO(n)/T(UT)dµT(R).

Since g is a class function,

g(ψ(UT,R)) = g(URU−1) = g(R);

together with the expression for | det dψ(UT,R)| in (3.3), this completes the proof.
�

3.2 Determinantal point processes

One important consequence of the Weyl formulae is that the eigenvalue pro-
cesses of the classical compact groups are what are known as determinantal
point processes, defined as follows.

Definition A point process X in a locally compact Polish space Λ is a ran-
dom discrete subset of Λ. For A ⊆ Λ, NA denotes the (random) number of
points of X in A. The function A 7→ NA is called the counting function of X.

Let µ be a Borel measure on Λ. For a point process X in Λ, if there exist
functions ρk : Λk → [0,∞) such that, for pairwise disjoint subsets A1, . . . , Ak ⊆

Λ,

E

 k∏
j=1

NAi

 =

(
A1 Ak

ρk(x1, . . . , xk)dµ(x1) · · · dµ(xk),
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then the ρk are called the k-point correlation functions (or joint intensities)
of X, with respect to µ.

A determinantal point process is a point process whose k-point correlation
functions have a special form:

Definition Let K : Λ × Λ → [0, 1]. A point process X is a determinantal
point process with kernel K if for all k ∈ N,

ρk(x1, . . . , xk) = det
[
K(xi, x j)

]k
i, j=1.

It is a result of Macchi [75] and Soshnikov [96] that if a kernel K defines an
operator K by

K f (x) =

∫
Λ

K(x, y) f (y)dµ(y)

and that operator is self-adjoint and trace class, then there is a determinantal
point process on Λ with kernel K if and only if K has all eigenvalues in [0, 1].

Proposition 3.7 The nontrivial eigenvalue angles of uniformly distributed
random matrices in any of SO (N), SO− (N), U (N), Sp (2N) are a determi-
nantal point process with respect to uniform (probability) measure on Λ, with
kernels as follows.

KN(x, y) Λ

U (N)
N−1∑
j=0

ei j(x−y) [0, 2π)

SO (2N) 1 +

N−1∑
j=1

2 cos( jx) cos( jy) [0, π)

SO (2N + 1)
N−1∑
j=0

2 sin
(

(2 j + 1)x
2

)
sin

(
(2 j + 1)y

2

)
[0, π)

SO− (2N + 1)
N−1∑
j=0

2 cos
(

(2 j + 1)x
2

)
cos

(
(2 j + 1)y

2

)
[0, π)

Sp (2N)
SO− (2N + 2)

N∑
j=1

2 sin( jx) sin( jy) [0, π)

In order to prove the proposition, we first describe a common framework in
which each of the groups can be treated.
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Equip Λ with a finite measure µ, and suppose that f : Λ→ C is such that∫
f dµ = 0

∫
| f |2dµ = 1.

Suppose that pn(x) are monic polynomials such that the sequence ϕ0 := 1√
µ(Λ)

,

ϕn = pn( f ) (n ≥ 1) is orthonormal in L2(µ); i.e.,∫
Λ

ϕ jϕkdµ = δ jk.

Define the function KN on Λ2 by

KN(x, y) :=
N−1∑
j=0

ϕ j(x)ϕ j(y),

and for each m ≥ 1, define Dm,N : Λm → C by

Dm,N(x1, . . . , xm) := det
[
KN(x j, xk)

]m
j,k=1.

Take D0,N = 1.

Lemma 3.8 1. For all (x1, . . . , xN) ∈ ΛN ,

DN,N =
1

µ(Λ)

∣∣∣∣ det
[
f (x j)k−1]N

j,k=1

∣∣∣∣2.
In particular, DN,N is real-valued, non-negative, and symmetric in (x1, . . . , xN).

2. For 1 ≤ n ≤ N,∫
Λ

Dn,N(x1, . . . , xn)dµ(xn) = (N + 1 − n)Dn−1,N(x1, . . . , xn−1).

The function Dn,N is real-valued, non-negative, and symmetric in its argu-
ments.

3. For m > N, Dm,N = 0.
4. Let g : Λn → R. Then

1
n!

∫
Λn

g(x1, . . . , xn)Dn,N(x1, . . . , xn)dµ(x1) · · · dµ(xn)

=
1

N!

∫
ΛN

 ∑
1≤ j1<···< jn≤N

g(x j1 , . . . , x jn )

 DN,N(x1, . . . , xN)dµ(x1) · · · dµ(xN).

The value of the lemma for us is that it is not too hard to check, using
the Weyl integration formulae, that the N-point correlation functions are those
claimed in Proposition 3.7; the full determinantal structure then follows from
the lemma.
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Proof
1. Observe that since ϕn = pn( f ) for a monic polynomial pn, starting from the
last column and adding linear combinations of previous columns, then multi-
plying the first column by 1√

µ(Λ)
,

1√
µ(Λ)

det
[
f (x j)k−1]N

j,k=1 = det
[
ϕk−1(x j)

]N
j,k=1,

and so

1
µ(Λ)

∣∣∣∣ det
[
f (x j)k−1]N

j,k=1

∣∣∣∣2 =
(
det

[
ϕk−1(x j)

]N
j,k=1

) (
det

[
ϕk−1(x j)

]N
j,k=1

)
=

(
det

[
ϕk−1(x j)

]N
j,k=1

) (
det

[
ϕ j−1(xk)

]N
j,k=1

)
= det

[ N∑
`=1

ϕ`−1(x j)ϕ`−1(xk)
]N

j,k=1

= DN,N(x1, . . . , xN).

2. We prove the statement by induction, using the Laplace expansion of the
determinant. The n = 1 case is trivial by orthonormality of the ϕ j.

For n > 1, let An,N :=
[
KN(x j, xk)

]n
j,k=1 and expand det An,N along the final

column:

det An,N =

n∑
k=1

(−1)k+nKN(xk, xn) det Ak,n
n,N ,

where Ak,`
n,N denotes the matrix An,N with the kth row and `th column removed.

When k = n, the matrix Ak,n
n,N is just

[
KN(x j, xk)

]n−1
j,k=1, which is in particular

independent of xn, and integrating KN(xn, xn) produces a factor of N.
For the remaining terms, expanding det Ak,n

n,N along the bottom row gives

det Ak,n
n,N =

n−1∑
`=1

(−1)`+n−1KN(xn, x`) det
[
KN(xi, x j)

]
1≤i, j≤n

i,k,n; j,`,n
.

Note in particular that there are no xn’s left in the determinant.
Now,∫

Λ

KN(xk, xn)KN(xn, x`)dµ(xn) =

N−1∑
r,s=1

ϕr(xk)ϕs(x`)
∫

Λ

ϕr(xn)ϕs(xn)dµ(xn)

=

N−1∑
r=0

ϕr(xk)ϕr(x`)

= KN(xk, x`).
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It follows that for k < n,∫
Λ

(−1)k+nKN(xk, xn) det Ak,n
n,Ndµ(xn)

=

n−1∑
`=1

(−1)k+`−1KN(xk, x`) det
[
KN(xi, x j)

]
1≤i, j≤n

i,k,n; j,`,n

= − det
[
KN(xi, x j)

]n−1
i, j=1.

As there are n− 1 terms of this type, together with the k = n case this gives the
formula in part 2.

Since we have already seen that DN,N is real-valued, non-negative, and sym-
metric, it follows immediately from the formula just established that Dn,N is as
well.
3. Using the same trick as in part 1., if n > N, then

det
[
KN(xi, x j)

]n
i, j=1 = det

[
ΦΦ∗

]
,

where Φ is an n × N matrix with entries ϕ j−1(i). Since the rank of ΦΦ∗ is at
most N < n, det ΦΦ∗ = 0.
4. The only non-trivial case is n < N. By the symmetry of DN,N(x1, . . . , xN),∫

ΛN

 ∑
1≤ j1···< jn≤N

g(x j1 , . . . , x jn )

 DN,N(x1, . . . , xN)dµ(xN) · · · dµ(x1)

=

(
N
n

) ∫
ΛN

g(x1, . . . , xn)DN,N(x1, . . . , xN)dµ(xN) · · · dµ(x1).

Using part 2. to integrate out xN , . . . , xn+1 gives that this is

N!
n!

∫
Λn

g(x1, . . . , xn)Dn,N(x1, . . . , xn)dµ(xn) · · · dµ(x1).

�

Proof of Proposition 3.7
Unitary case: Let X =

{
eiθ1 , . . . , eiθN

}
be the eigenvalue process corresponding

to Haar measure on the unitary group. Let Λ = [0, 2π), let f : Λ → C be
defined by f (θ) = eiθ, and for n ≥ 1, let ϕn = f n. Then the kernel KN(x, y) from
the lemma is

KN(x, y) =

N−1∑
j=0

ϕ j(x)ϕ j(y) =

N−1∑
j=0

ei j(x−y)

and the Weyl density is∏
1≤ j<k≤N

|eiθ j − eiθk |2 =
∣∣∣∣ det

[
eiθ j(k−1)]N

j,k=1

∣∣∣∣2 = DN,N ,
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by part 1. of the lemma.
Now, if A1, . . . , AN ⊆ Λ are pairwise disjoint, then

∏N
j=1 NA j (X) = 1 if there

is some permutation σ ∈ S N such that θ j ∈ Aσ( j) for each j, and otherwise∏N
j=1 NA j (X) = 0. It thus follows from the Weyl integration formula that

E

 N∏
j=1

NA j

 = N!P
[
eiθ1 ∈ A1, . . . , eiθN ∈ AN

]
=

1
(2π)N

∫
A1

· · ·

∫
AN

∏
1≤ j<k≤N

|eiθ j − eiθk |2dθN · · · dθ1

=
1

(2π)N

∫
A1

· · ·

∫
AN

DN,N(θ1, . . . , θN)dθN · · · dθ1.

More generally, if A1, . . . , Ak ⊆ Λ are pairwise disjoint, then

E

 k∏
j=1

NA j

 = E

 k∏
j=1

 N∑
`=1

1A j (θ`)




=
∑
σ∈S k

∑
1≤`1<···<`k≤N

E

 k∏
j=1

1Aσ( j) (θ` j )


=

k!
N!(2π)N

∫
ΛN

 ∑
1≤`1<···<`k≤N

 k∏
j=1

1A j (θ` j )


 DN,N(θ1, . . . , θN)dθ1 · · · dθN .

By part 4. of the Lemma, this is

1
(2π)k

∫
Λk

 k∏
j=1

1A j (θ j)

 Dk,N(θ1, . . . , θk)dθ1 · · · dθk

=
1

(2π)k

∫
A1

· · ·

∫
Ak

det
[
KN(θi, θ j)

]k
i, j=1dθN · · · dθ1.

Even special orthogonal case: Let X =
{
eiθ1 , . . . , eiθN

}
be the nontrivial eigen-

value process corresponding to Haar measure on SO (2N), and let Λ = [0, π].
In order to work within the framework of the lemma, we choose µ such that
dµ = 1

2πdθ on Λ, so that µ(Λ) = 1
2 . Let f : Λ → C be defined by f (θ) =

2 cos(θ) = eiθ + e−iθ; note that indeed∫
f dµ = 0

∫
| f |2dµ = 1.

It is easy to show by induction that the function

ϕn(θ) = 2 cos(nθ) = einθ + e−inθ
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is a monic polynomial of degree n in eiθ + e−iθ, and if we choose ϕ0(θ) =
√

2, then {ϕn}n≥0 is an orthonormal sequence with respect to µ. Indeed, the
reason for the choice of normalization of µ is so that this sequence of monic
polynomials in 2 cos(θ) is orthonormal.

The kernel from the lemma corresponding to our choice of µ is

Kµ
N(x, y) =

N−1∑
j=0

ϕ j(x)ϕ j(y) = 2 +

N−1∑
j=1

4 cos( jx) cos( jy).

Now, the density given by the Weyl integration formula in the case of SO (2N)
is

2
N!(2π)N

∏
1≤ j<k≤N

(2 cos(θ j) − 2 cos(θk))2

=
1

N!(2π)Nµ(Λ)

∣∣∣∣ det
[(

2 cos(θ j)
)k−1]N

j,k=1

∣∣∣∣2 =
1

N!(2π)N DN,N ,

by part 1. of the lemma. So if A1, . . . , Ak ⊆ Λ are pairwise disjoint, then as
above,

E

 k∏
j=1

NA j

 =
k!

N!(2π)N

∫
ΛN

 ∑
1≤`1<···<`k≤N

 k∏
j=1

1A j (θ` j )


 DN,N(θ1, . . . , θN)dθ1 · · · dθN

=
1

(2π)k

∫
Λk

 k∏
j=1

1A j (θ j)

 Dk,Ndθ1 · · · dθk

=
1

(2π)k

∫
A1

· · ·

∫
Ak

det
[
2 + 4

N−1∑
j=1

cos(θr) cos(θs)
]k
r,s=1dθ1 · · · dθk.

Cancelling the 1
2k in front of the integral with a factor of 2 in the matrix inside

the determinant shows that the SO (2N) eigenvalue process is determinantal
with respect to the uniform probability measure on [0, π] with kernel

KN(x, y) = 1 + 2
N−1∑
j=1

cos( jx) cos( jy).

Odd special orthogonal case: Let X =
{
eiθ1 , . . . , eiθN

}
be the nontrivial eigen-

value process corresponding to Haar measure on SO (2N + 1), and let Λ =

[0, π]. Note that the form of the Weyl density in this case is somewhat differ-
ent:

2N

N!πN

∏
1≤ j≤N

sin2
(
θ j

2

) ∏
1≤ j<k≤N

(2 cos(θk) − 2 cos(θ j))2
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contains a product over j in addition to the Vandermonde factor. Rather than
treating this product as a determinant, it is more convenient within the frame-
work of Lemma 3.8 to treat the sin2

(
θ j

2

)
factors as defining the reference mea-

sure µ. That is, let µ be the probability measure with dµ = 2
π

sin2
(
θ
2

)
dθ on

[0, π].
The Vandermonde factor in the Weyl density suggests taking f (θ) = 2 cos(θ);

since
2
π

∫ π

0
2 cos(θ) sin2

(
θ

2

)
dθ = −1,

we take instead

f (θ) = 1 + 2 cos(θ) =
sin

(
3θ
2

)
sin

(
θ
2

) .
From the last expression it is easy to see that

∫
f 2dµ = 1. In analogy with the

previous case, the second expression for f suggests choosing

ϕn(θ) =
sin

((
2n+1

2

)
θ
)

sin
(
θ
2

)
for n ≥ 1 (and ϕ0 = 1), so that {ϕn}n≥0 is orthonormal with respect to µ.
Rewriting

ϕn(θ) = 1 +

n∑
j=1

(
ei jθ + e−i jθ)

shows that ϕn(θ) is indeed a monic polynomial of degree n in f . The kernel
Kµ

N(x, y) as in Lemma 3.8 is then

Kµ
N(x, y) =

N−1∑
j=0

ϕ j(x)ϕ j(y) = 1 +

N−1∑
j=1

sin
((

2n+1
2

)
x
)

sin
((

2n+1
2

)
y
)

sin
(

x
2

)
sin

(
y
2

) .

The distribution of the eigenangles from the Weyl formula is

2N

N!πN

∏
1≤ j≤N

sin2
(
θ j

2

) ∏
1≤ j<k≤N

(2 cos(θk) − 2 cos(θ j))2dθ1 · · · dθN

=
2N

N!πN

∏
1≤ j≤N

sin2
(
θ j

2

) (
det

[(
1 + 2 cos(θ j)

)k−1]N
j,k=1

)2
dθ1 · · · dθN

=
1

N!
DN,Ndµ(θ1) · · · dµ(θN),

by part 1. of the lemma and definition of µ. Now, if k ≤ N and A1, . . . , Ak ⊆ Λ
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are pairwise disjoint, then by the computation above and part 4. of the lemma,

E

 k∏
j=1

NA j


=

k!
N!

∫
ΛN

 ∑
1≤ j1<···< jk≤N

k∏
`=1

1A` (θ j` )

 DN,N(θ1, . . . , θN)dµ(θ1) · · · dµ(θN)

=

∫
Λk

 k∏
`=1

1A` (θ`)

 Dk,N(θ1, . . . , θk)dµ(θ1) · · · dµ(θk)

=
2k

πk

∫
A1

· · ·

∫
Ak

det

1 +

N−1∑
`=1

sin
((

2`+1
2

)
θi

)
sin

((
2`+1

2

)
θ j

)
sin

(
θi
2

)
sin

(
θ j

2

) 
k

i, j=1

 k∏
j=1

sin2
(
θ j

2

)
dθ j.

Now multiplying the ith row of matrix inside the determinant by one factor of
sin

(
θi
2

)
and the jth column by the other factor of sin

(
θ j

2

)
, and each entry by 2

gives that this last expression is

1
πk

∫
A1

· · ·

∫
Ak

det

N−1∑
`=0

sin
((

2` + 1
2

)
θi

)
sin

((
2` + 1

2

)
θ j

)
k

i, j=1

 k∏
j=1

dθ j.

To treat the negative coset, one need only note that because we are in the odd
case, the two cosets of the orthogonal group are related by multiplication by −I.
The nontrivial eigenangles (ψ1, . . . , ψN) of a Haar-distributed random matrix
in SO− (2N + 1) are thus equal in distribution to (π − θ1, . . . , π − θN), where
(θ1, . . . , θN) are the nontrivial eigenangles of a Haar-distributed random matrix
in SO (2N + 1), and the claimed formula then follows by changing variables.

Symplectic case: This is essentially the same as the previous case. Taking dµ =
2
π

sin(θ)dθ, f (θ) = 2 cos(θ), and ϕn(θ) =
sin(nθ)
sin(θ) for n ≥ 1, the proof proceeds as

above.
�

For some purposes, the following alternative forms of the kernels can be
more convenient. In all but the unitary case, they are the same functions; for
the unitary case, the kernels are different functions but are unitarily similar and
thus define the same point processes.

Proposition 3.9 For N ∈ N, let

S N(x) :=

sin
(

Nx
2

)
/ sin

(
x
2

)
if x , 0,

N if x = 0.
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The nontrivial eigenvalue angles of uniformly distributed random matrices in
any of SO (N), SO− (N), U (N), Sp (2N) are a determinantal point process,
with respect to uniform (probability) measure on Λ, with kernels as follows.

LN(x, y) Λ

U (N) S N(x − y) [0, 2π)

SO (2N)
1
2

(
S 2N−1(x − y) + S 2N−1(x + y)

)
[0, π)

SO (2N + 1)
1
2

(
S 2N(x − y) − S 2N(x + y)

)
[0, π)

SO− (2N + 1)
1
2

(
S 2N(x − y) + S 2N(x + y)

)
[0, π)

Sp (2N)
SO− (2N + 2)

1
2

(
S 2N+1(x − y) − S 2N+1(x + y)

)
[0, π)

Exercise 3.10 Verify that these kernels define the same determinantal point
processes as those given on page 81.

3.3 Matrix moments

While we have in principle completely described the distribution of the eigen-
values of a random matrix by the Weyl density formula, in practice, using the
Weyl density to answer natural questions about random matrices, particularly
those having to do with asymptotic behavior for large matrices, can be rather
difficult. Under such circumstances, one option is to consider the moments.
The following remarkable moment formulae are due to Diaconis and Shahsha-
hahni [36]; the proofs give a nice illustration of the use of character theory in
the study of random matrices from the classical compact groups. Because it is
the simplest, we begin with the case of the unitary group.

Proposition 3.11 Let U be a Haar-distributed random matrix inU (n) and let
Z1, . . . ,Zk be i.i.d. standard complex Gaussian random variables (i.e., complex-
valued random variables whose real and imaginary parts are independent cen-
tered Gaussians with variance 1

2 ).
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1. Let a = (a1, . . . , ak) and b = (b1, . . . , bk) with a j, b j ∈ N, and let n ∈ N be
such that

max


k∑

j=1

ja j,

k∑
j=1

jb j

 ≤ n.

Then

E

 k∏
j=1

((Tr(U j))a j (Tr(U j))b j

 = δab

k∏
j=1

ja j a j! = E

 k∏
j=1

(
√

jZ j)a j (
√

jZ j)b j

 .
2. For any j, k, n, if U is Haar-distributed in U (n), then

E
[
Tr(U j)Tr(Uk)

]
= δ jk min{ j, n}.

Proof Let p j denote the power sum symmetric function:

p j(x1, . . . , xn) = x j
1 + · · · + x j

n.

Then
k∏

j=1

(Tr(U j))a j =

k∏
j=1

pa j

j (U),

where by abuse of notation, p j(U) denotes the scalar-valued function

p j(U) = p j(λ1, . . . , λn)

where λ1, . . . , λn are the eigenvalues of U. In symmetric function theory, such
a product of power sums (a so-called compound power sum) is denoted pµ,
where µ is the partition of the integer K = a1 + 2a2 + · · · + kak consisting of
a1 1’s, a2 2’s, and so on. There are many different bases for the space of sym-
metric functions, one of which is the Schur functions, which also happen to be
the irreducible characters of U (n) (see Section 1.3). Better still, the change-
of-basis formula with which one can express compound power sums in terms
of Schur functions is very explicit, with the coefficients given by irreducible
characters of the symmetric group. Indeed, the conjugacy classes of the sym-
metric group are exactly described by cycle structure, and a cycle structure can
be thought of as an integer partition (a1 1-cycles, a2 2-cycles, ..., ak k-cycles
corresponds to the partition of K above). Since the irreducible characters are
in one-to-one correspondence with the conjugacy classes, this means that the
irreducible characters of S K can be indexed as {χλ : λ a partition of K}. It is
possible to make explicit how a partition leads to an irreducible representation
of S K , but we will not go into this here. Instead, we will take as given the
following change of basis formula, which is proved using the representation
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theory of the symmetric groups. For pµ a compound power sum as above and
{sλ}λ`K the Schur functions corresponding to partitions λ of the integer K,

pµ =
∑
λ`K

χλ(µ)sλ.

Writing L = b1 + 2b2 + · · ·+ kbk and taking ν to be the partition of L with b1

1’s, b2 2’s, etc.,

E

 k∏
j=1

((Tr(U j))a j (Tr(U j))b j

 = E
[
pµ(U)pν(U)

]
=

∑
λ`K,π`L

χλ(µ)χπ(ν)E
[
sλ(U)sπ(U)

]
.

Since U 7→ sλ(U) are the irreducible characters of U (n), it follows from the
first orthogonality relation (Proposition 1.12 in Section 1.3),

E
[
sλ(U)sπ(U)

]
= δλπ1(`(λ) ≤ n).

(Recall that sλ(U) = 0 if `(λ) > n.) The condition on n in the statement of the
theorem is exactly that max{K, L} ≤ n, and so `(λ) ≤ n for each partition of K
or L. That is,

E

 k∏
j=1

((Tr(U j))a j (Tr(U j))b j

 = δKL

∑
λ`K

χλ(µ)χλ(ν).

Applying the second orthogonality relation (Proposition 1.13 of Section 1.3)
to the irreducible characters of S K gives that∑

λ`K

χλ(µ)χλ(ν) = δµν
|S K |

c(µ)
,

where c(µ) is the size of the conjugacy class of µ in S K . Since µ corresponds
to permutations with a1 1-cycles, a2 2-cycles, and so on,

c(µ) =

(
K

1a1 , . . . , kak

)
(0!)a1 · · · ((k − 1)!)ak

a1! · · · ak!
,

where the multinomial coefficient
(

K
1a1 ,...,kak

)
is the number of ways to divide the

integers 1, . . . ,K into a1 groups of size 1, a2 groups of size 2, etc; the number
of cyclic permutations of {i1, . . . , i j} is ( j − 1)!; and the factor of a1! · · · ak! in
the denominator corresponds to orders in which one can write the cycles of a
given length. We thus have that

E

 k∏
j=1

((Tr(U j))a j (Tr(U j))b j

 = δKLδλµ

k∏
j=1

ja j a j! = δab

k∏
j=1

ja j a j!.
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To see that this is the same as the mixed moment of complex Gaussian ran-
dom variables as stated in the theorem, first note that a standard complex Gaus-
sian random variable Z can be written as Reiθ with R2 = Z2

1 + Z2
2 for (Z1,Z2) in-

dependent real standard Gaussian variables, θ uniformly distributed in [0, 2π),
and (R, θ) independent. Moreover, Z2

1 + Z2
2

d
= Y, where Y is an exponential

random variable with parameter 1. Then

E[ZaZb] = E
[
Ra+b

]
E

[
ei(a−b)θ

]
= δabE

[
Ya] = δaba!.

To prove the second statement, by the argument above we have that

E[Tr(U j)Tr(Uk)] = δ jk

∑
λ` j

|χλ(( j))|21(`(λ) ≤ n),

where ( j) is the trivial partition of j into the single part j. Evaluating the sum
thus requires knowledge of the irreducible characters of the symmetric group.
It is a fact (see Exercise 4.16 in [48]) that χλ(( j)) = 0 unless λ is a so-called
hook partition: a partition of the form (a, 1, 1, · · · , 1) (its Young diagram looks
like a hook). In case that λ is a hook partition,

χλ(( j)) = (−1)`(λ)−1.

There are min{ j, n} hook partitions λ of j with `(λ) ≤ n, and so

E[Tr(U j)Tr(Uk)] = δ jk min{ j, n}.

�

The orthogonal and symplectic cases are more complicated because the ex-
pansions of the power sum symmetric functions in terms of group characters
are more difficult. The approach can nevertheless be extended to give the fol-
lowing.

Theorem 3.12 Let U be a Haar-distributed random matrix in O (n), and let
Z1, . . . ,Zk be i.i.d. standard Gaussian random variables. Suppose that a1, . . . , ak

are nonnegative integers such that 2
∑k

j=1 ja j ≤ n. Let η j be 1 if j is even and
0 if j is odd. Then

E

 k∏
j=1

(Tr(U j))a j

 =

k∏
j=1

f j(a j) = E

 k∏
j=1

(
√

jZ j + η j)a j

 ,
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where

f j(a) =


0, j, a odd;

j
a
2 (a − 1)!!, j odd, a even;
b a

2 c∑
s=0

(
a
2s

)
(2s − 1)!! js, j even.

Proof Let µ denote the partition of K := a1 + 2a2 + · · · + kak with a1 1’s, a2

2’s, and so on. Then as in the unitary case,

k∏
j=1

(Tr(U j))a j = pµ(U),

the compound power symmetric function evaluated at the eigenvalues of U. As
before, the key to the proof is to express pµ in terms of the irreducible charac-
ters of the orthogonal group; the necessary expansion is rather less classical in
this case and was developed in the early ’90s by A. Ram.

Let V be the standard n-dimensional representation of O (n) (i.e., U ∈ O (n)
acts by matrix-vector multiplication), and for k ∈ N, recall that V⊗k is a rep-
resentation of O (n), where U(v1 ⊗ · · · ⊗ vk) = Uv1 ⊗ · · · ⊗ Uvk. The Brauer
algebra Bk,n is the algebra of linear transformations of V⊗k which commute
with the action of O (n). The Brauer algebra is not a group algebra, and so it
does not fit into the usual framework of representation theory. Nevertheless,
there is a notion of irredicible characters, and these play the role here that the
irreducible characters of the symmetric group played in the case of random uni-
tary matrices. Specifically, there is the following expansion of the compound
power symmetric function:

pµ(x1, . . . , xn) =

b K
2 c∑

j=0

∑
ν`K−2 j

1{ν′1+ν′2≤n}χ
ν
K,n(ω)tν(x1, . . . , xn),

where ν′1, ν
′
2 are the first two parts of the conjugate partition to ν (so that the

indicator is nonzero if and only if there are at most n boxes in the first two
columns of the Young diagram of ν); χνK,n(ω) is a character of BK,n correspond-
ing to ν, being evaluated at an argument ω determined by µ (exactly how this
works will be treated like a black box here); and tν is the character of O (n)
corresponding to ν (see Theorem 1.17).

By the first orthogonality relation for characters (Proposition 1.12 in Section
1.3), E[tν(U)] = 0 unless tν is constant; this corresponds to the trivial partition
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ν = (0). It thus follows from the expansion formula that

E

 k∏
j=1

(Tr(U j))a j

 =

χ(0)
K,n(ω), K even;

0, K odd.

The formulae developed by Ram for evaluating these characters of the Brauer
algebra give exactly the value for χ(0)

K,n(ω) quoted in the statement, as long as
n ≥ 2K. Seeing that this is the same as the mixed moment of Gaussians is
immediate in the case that η j = 0 (i.e., j is odd), and only requires expanding
the binomial in the case η j = 1.

�

Brauer proved expansion formulae for the power sum symmetric functions
in terms of the characters of the symplectic group as well; these also involve
characters of the Brauer algebra as coefficients. The following theorem then
follows by the same approach as in the orthogonal case. Recall that the eigen-
values of a symplectic matrix come in complex conjugate pairs, so traces of
powers are necessarily real.

Theorem 3.13 Let U be a Haar-distributed random matrix in Sp (2n) , and
let Z1, . . . ,Zk be i.i.d. standard Gaussian random variables. Suppose that a1, . . . , ak

are nonnegative integers such that
∑k

j=1 ja j ≤ n. Let η j be 1 if j is even and 0
if j is odd, and let f j(a) be defined as in Theorem 3.12. Then

E

 k∏
j=1

(Tr(U j))a j

 =

k∏
j=1

(−1)( j−1)a j f j(a j) = E

 k∏
j=1

(
√

jZ j − η j)a j

 .

3.4 Patterns in eigenvalues: powers of random matrices

The structure of the eigenvalue distributions of random matrices from the clas-
sical compact groups is very rich, with intriguing patterns hidden somehow in
the Weyl integration formula. One example is the following result of E. Rains.

Theorem 3.14 Let m ∈ N be fixed and let m̃ := min{m,N}. If ∼ denotes
equality of eigenvalue distributions, then

U (N)m ∼
⊕

0≤ j<m̃

U
(⌈N − j

m̃

⌉)
That is, if U is a uniform N × N unitary matrix, the eigenvalues of Um are
distributed as those of m̃ independent uniform unitary matrices of sizes⌊N

m̃

⌋
:= max

{
k ∈ N | k ≤

N
m̃

}
and

⌈N
m̃

⌉
:= min

{
k ∈ N | k ≥

N
m̃

}
,
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such that the sum of the sizes of the matrices is N.
In particular, if m ≥ N, the eigenvalues of Um are distributed exactly as N

i.i.d. uniform points on S1.

For the proof, we will need the following preliminary lemma.

Lemma 3.15 Let

p(θ1, . . . , θn) :=
∑

(p1,...,pn)

a(p1,...,pn)

∏
1≤k≤n

eipkθk

be a Laurent polynomial in {eiθk }nk=1 which is a probability density with respect
to 1

(2π)n dθ1 · · · dθn. If (Θ1, . . . ,Θn) is distributed according to p, then the density
of (mΘ1, . . . ,mΘn) with respect to 1

(2π)n dθ1 · · · dθn is

p(m)(θ1, . . . , θn) :=
∑

(p1,...,pn)
m|pk ∀ k

a(p1,...,pn)

∏
1≤k≤n

ei( pk
m )θk ,

where mΘ j is interpreted modulo 2π.

Proof To prove the lemma, it suffices to show that if (Φ1, . . . ,Φn) is dis-
tributed according to p(m), then for any Laurent monomial µ(θ1, . . . , θn) :=∏

1≤k≤n eirkθk ,

Eµ(mΘ1, . . . ,mΘn) = Eµ(Φ1, . . . ,Φn).

Now, given two Laurent monomials

µ1(θ1, . . . , θn) :=
∏

1≤k≤n

eirkθk µ2(θ1, . . . , θn) :=
∏

1≤k≤n

eiskθk ,

we have

1
(2π)n

∫ 2π

0
· · ·

∫ 2π

0
µ1(θ)µ2(θ)dθ1 · · · dθn =

1, rk + sk = 0∀ k;

0, otherwise,

and so

Eµ(mΘ1, . . . ,mΘn) =
1

(2π)n

∑
(p1,...,pn)

a(p1,...,pn)

∫ 2π

0
· · ·

∫ 2π

0

∏
1≤k≤n

ei(pk+mrk)θk dθ1 . . . dθn

= a(−mr1,...,−mrn).

On the other hand,

Eµ(Φ1, . . . ,Φn) =
1

(2π)n

∑
(p1,...,pn)
m|pk ∀ k

a(p1,...,pn)

∫ 2π

0
· · ·

∫ 2π

0

∏
1≤k≤n

ei( pk
m +rk)θk dθ1 . . . dθn

= a(−mr1,...,−mrn),
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which completes the proof.
�

Proof of Theorem 3.14 For the proof, it is more convenient to index eigen-
values starting at 0 than at 1: the eigenvalues of U are denoted {eiθk }0≤k<n.

By expanding the Vandermonde determinant as a sum over permutations,
the Weyl density can be written as

1
(2π)nn!

∑
σ,τ∈S n

sgn(στ−1)
∏

0≤k<n

ei(σ(k)−τ(k))θk .

Then by Lemma 3.15, the density of the eigenvalues of Um with respect to
1

(2π)n dθ1 . . . dθn is

1
n!

∑
σ,τ∈S n,

m|(σ(k)−τ(k))∀ k

sgn(στ−1)
∏

0≤k<n

ei
(
σ(k)−τ(k)

m

)
θk .

Making the change of index ` = τ(k) followed by the substitution π = σ ◦ τ−1

reduces this expression to ∑
π∈S n,

m|(π(`)−`)∀ `

sgn(π)
∏

0≤`<n

ei
(
π(`)−`

m

)
θ` .

Note that if π ∈ S n is such that m | (π(`) − `) for all `, then π permutes
within conjugacy classes mod m, and can therefore be identified with the m
permutations it induces on those conjugacy classes. Specifically, for 0 ≤ j < m,
define π( j) ∈ S ⌈

n− j
m

⌉ by

π( j)(k) =
π(mk + j) − j

m
.

(Note that sgn(π) =
∏

0≤ j<m sgn(π( j)).)
The density of the eigenvalues of Um can thus be factored as∑
π∈S n,

m|(π(`)−`)∀ `

sgn(π)
∏

0≤`<n

ei
(
π(`)−`

m

)
θ`

=
∑

π(0)∈S d n
m e

· · ·
∑

π(m−1)∈S
d n−m+1

m e

∏
0≤ j<m

sgn(π( j))
∏

0≤k<
⌈

n− j
m

⌉ ei(π( j)(k)−k)θkm+ j

 ,
which is exactly the product of the eigenvalue densities of U0, . . . ,Um−1, where
{U j}0≤ j<m are independent and U j is distributed according to Haar measure on
O

(⌈
n− j
m

⌉)
. �
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Notes and References

The Weyl integration formula is laid out in detail in Weyl’s book [107]. It is
discussed in varying detail and accessibility in many modern sources; I found
the exposition of the unitary case in the notes [88] by Angela Pasquale partic-
ularly helpful.

The approach to the determinantal structure of the eigenvalue processes laid
out in Section 3.2 follows that of chapter 5 of Katz and Sarnak’s book [63].
Many other random matrix ensembles also have eigenvalue processes which
are determinantal: the GUE, the complex Wishart matrices, and the complex
Ginibre ensemble all have these properties (although the real counterparts do
not), as does unitary Brownian motion.

The moments of traces of Haar-distributed random matrices have an inter-
esting combinatorial connection; namely, they are related to the so-called in-
creasing subsequence problem, which is about the distribution of the length of
the longest increasing subsequence of a random permutation. (An increasing
subsequence of a permutation π is a sequence i1 < i2 < · · · < ik such that
π(i1) < π(i2) < · · · < π(ik).) In [91], Rains proved the following.

Theorem 3.16

1. If U is distributed according to Haar measure on U (n) and j ∈ N is fixed,
then E

[
|Tr(U)|2 j

]
is equal to the number of permutations π of {1, . . . , j}

such that π has no increasing subsequence of length greater than n.
2. If U is distributed according to Haar measure on O (n) and j ∈ N is fixed,

then E
[
Tr(U) j

]
is equal to the number of permutations π of {1, . . . , j} such

that π−1 = π, π has no fixed points, and π has no increasing subsequence of
length greater than n.

3. If U is distributed according to Haar measure on Sp (2n) and j ∈ N is fixed,
then E

[
Tr(U) j

]
is equal to the number of permutations π of {1, . . . , j} such

that π−1 = π, π has no fixed points, and π has no decreasing subsequence
of length greater than 2n.

The approach taken by Rains involved expansion in terms of characters, sim-
ilar to the proof of Theorem 3.11. The connection between Haar-distributed
random matrices and increasing subsequence problems was further explored
by Baik and Rains [7], who showed that the moments of traces of random ma-
trices from the classical groups are equal to the dimensions of certain invariant
spaces of the groups (these subspaces having a natural connection to increasing
subsequence problems).

Other approaches to Theorem 3.11 have since been developed: Stolz [100]
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gave an approach using invariant theory, and Hughes and Rudnick [58] gave
an approach using cumulants, which in fact extended the range in which the
matrix moments and the corresponding Gaussian moments match exactly.

In [92], Rains proved results analogous to Theorem 3.14 for random matri-
ces in SO (n), SO− (n) and Sp (2n); they are more complicated to state because
of parity issues and because of the existence of trivial eigenvalues in some
cases. In fact, Rains went much further, proving analogous results for general
compact Lie groups.



4
Eigenvalue distributions: asymptotics

4.1 The eigenvalue counting function

In this section we explore some of the consequences of the determinantal
structure of the eigenvalue processes for the counting functions ND, and in
particular, for

Nθ = #{ j : 0 ≤ θ j ≤ θ}.

We begin with some further background on determinantal point processes.

Some general features of determinantal point processes

The following remarkable property of certain determinantal point processes
will be crucial in our analysis of the eigenvalue processes on the classical com-
pact groups.

Theorem 4.1 Let X be a determinantal point process on a compact metric
measure space (Λ, µ) with kernel K : Λ × Λ → C. Suppose that the corre-
sponding integral operator K : L2(µ)→ L2(µ) defined by

K( f )(x) =

∫
K(x, y) f (y) dµ(y) (4.1)

is self-adjoint, nonnegative, and trace-class with eigenvalues in [0, 1]. For D ⊆
Λ measurable, let KD(x, y) = 1D(x)K(x, y)1D(y) be the restriction of K to D,
and denote by {λk}k∈A the eigenvalues of the corresponding operator KD on
L2(D) (A may be finite or countable). Let ND be the number of particles of the
determinantal point process with kernel K which lie in D. Then

ND
d
=

∑
k∈A

ξk,

99
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where “ d
=” denotes equality in distribution and the ξk are independent Bernoulli

random variables with P[ξk = 1] = λk and P[ξk = 0] = 1 − λk.

Identifying the counting function of a point process as a sum of independent
{0, 1}-valued random variables opens the door to the use of countless results of
classical probability theory.

To prove the theorem, we need some preliminaries about the operator K

defined in (4.1). We will assume in what follows that the kernel K : Λ×Λ→ C

is continuous, conjugate symmetric, and positive definite; i.e., for all n ∈ N,
x1, . . . , xn ∈ Λ, and z1, . . . , zn ∈ C,

n∑
i, j=1

K(xi, x j)ziz j ≥ 0.

We will also assume that that Λ is compact.
Under these assumptions, it is a classical result of operator theory that the

operator K : L2(µ)→ L2(µ) is self-adjoint, non-negative, and trace class; i.e., if
{λ j} j∈J are the eigenvalues of K (J may be finite or infinite), then

∑
j∈J λ j < ∞.

(The λ j are necessarily positive since K is non-negative.) Moreover, K can be
diagonalized; there are orthonormal eigenfunctions {φ j} j∈J of K such that, for
any f ∈ L2(µ),

K( f ) =
∑
j∈J

λ j

〈
f , φ j

〉
φ j,

where the right-hand side converges in L2(µ) for any f ∈ L2(µ).
One can then conclude from a simple measure-theoretic argument that

K(x, y) =
∑
j∈J

λ jφ j(x)φ j(y)

for µ × µ almost every (x, y).
If λ j = 1 for all j, then the operator K defined by K is just orthogonal

projection in L2(µ) onto the span of the φ j; in this case, the following result
shows that the total number of points in the process is deterministic and equal
to the rank of K.

Proposition 4.2 Suppose that X is a determinantal point process on Λ with
kernel

K(x, y) =

N∑
j=1

φ j(x)φ j(y),

where {φ j}
N
j=1 are orthonormal in L2(µ). Then with probability one, NΛ = N.
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Proof Observe first that if

K(x, y) =

N∑
j=1

φ j(x)φ j(y),

then for any n ∈ N and [
K(xi, x j)

]
1≤i, j≤n = ΦΦ∗,

where Φ =
[
φ j(xi)

]
1≤i≤n
1≤ j≤N

∈ Mn,N(C). In particular, if n > N, then det(
[
K(xi, x j)

]
1≤i, j≤n) =

0, since ΦΦ∗ has rank at most N, and thus NΛ ≤ N. But also,

ENΛ =

∫
Λ

K(x, x)dµ(x) =

N∑
j=1

∫
Λ

|φ j(x)|2dµ(x) = N.

�

In the context of eigenvalue processes, we began with point processes and
found them to be determinantal with explicitly described kernels. To prove
Theorem 4.1, we will need to go in the other direction; namely, start with a
kernel and from it get a point process. Recall that, by the results of Macchi and
Soshnikov, this is always possible as long as the corresponding operator K is
self-adjoint, trace class, and has all eigenvalues in [0, 1].

Proof of Theorem 4.1 First observe that it suffices to prove the Theorem when
D = Λ, since if K defines a self-adjoint, nonnegative trace-class operator with
eigenvalues in [0, 1], so does KD.

Suppose that K is a finite-rank operator; i.e.,

K(x, y) =

N∑
j=1

λ jφ j(x)φ j(y)

for some finite N. Define a randomized version of K by

KI(x, y) =

N∑
j=1

I jφ j(x)φ j(y),

where {I j}
N
j=1 are independent Bernoulli random variables, with P[I j = 1] = λ j

and P[I j = 0] = 1 − λ j.
Let XI denote the point process on Λ with kernel KI ; i.e., a random set

of points constructed by first sampling the I j to determine a kernel KI , then
sampling from the point process with kernel KI . We will show that XI has the
same k-point correlation functions as X, the point process defined by K.

Once we have shown this, the proof is completed as follows. Observe that
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KI defines a projection operator. Specifically, KI is orthogonal projection onto
the span of those φ j for which I j = 1, and so the rank of KI is

∑N
j=1 I j. It thus

follows from Proposition 4.2 that

|X|
d
= |XI | =

N∑
j=1

I j.

We now show that the kernels K and KI define the same point processes.
Note that, as in the proof of Proposition 4.2 above, if n ∈ N and

C =
[
K(xi, x j)

]
1≤i, j≤n CI =

[
KI(xi, x j)

]
1≤i, j≤n,

then C = Φ diag(λ1, . . . , λN)Φ∗ and CI = Φ diag(I1, . . . , IN)Φ∗, where Φ =[
φ j(xi)

]
1≤i≤n
1≤ j≤N

∈ Mn,N(C). In particular, if n > N, then det(C) = det(CI) = 0,

since both matrices have rank at most N.
For n ≤ N, we must show that E det(CI) = det(C), for which we use the

Cauchy-Binet formula: for C = AB,

det(C) =
∑

1≤k1<···<kn≤N

det
(
A[n],{k1,...,kn}

)
det

(
B{k1,...,kn},[n]

)
,

where [n] := {1, . . . , n} and for sets of indices K1,K2, AK1,K2 denotes the matrix
gotten from A by deleting all rows except those with indices in K1 and all
columns except those with indices in K2. By multilinearity and independence,

E det
(
(Φ diag(I1, . . . , IN))[n],{k1,...,kn}

)
= E

[
Ik1 · · · Ikn det

(
Φ[n],{k1,...,kn}

)]
= λk1 · · · λkn det

(
Φ[n],{k1,...,kn}

)
= det

(
(Φ diag(λ1, . . . , λN))[n],{k1,...,kn}

)
.

The result now follows from the Cauchy-Binet formula.
If K(x, y) =

∑∞
j=1 λ jφ j(x)φ j(y) so that K is not a finite-rank operator, we

consider truncated kernel

KN(x, y) =

N∑
j=1

λ jφ j(x)φ j(y)

corresponding to a rank N approximation of K. Fix n ∈ N; the argument above
shows that for x1, . . . , xn ∈ Λ,

E det
[
KN,I(xi, x j)

]
1≤i, j≤n = det

[
KN(xi, x j)

]
1≤i, j≤n,

where KN,I denotes the randomized version of KN , with the λ j replaced with
i.i.d. Bernoulli random variables. By continuity of the determinant,

det
[
K(xi, x j)

]
1≤i, j≤n = lim

N→∞
det

[
KN(xi, x j)

]
1≤i, j≤n
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for all x1, . . . , xn ∈ Λ such that the sequences {φ j(xi)} j≥1 are square-summable
(which is µ almost all of them). That is, we only need to show that

E
(

lim
N→∞

det
[
KN,I(xi, x j)

]
1≤i, j≤n

)
= lim

N→∞
E det

[
KN,I(xi, x j)

]
1≤i, j≤n (4.2)

for µ almost every x1, . . . , xn

By the Cauchy-Binet formula again,

det
[
KN,I(xi, x j)

]
1≤i, j≤n =

∑
1≤k1<···<kn≤N

det
(
(ΦDI)[n],{k1,...,kn}

)
det

(
Φ∗{k1,...,kn},[n]

)
,

where Φ is the half-infinite array with i- jth entry φ j(xi) (where 1 ≤ i ≤ n and
j ≥ 1), and DI = diag(I1, I2, . . .). By multilinearity, this is∑

1≤k1<···<kn≤N

Ik1 · · · Ikn

∣∣∣∣ det
(
Φ[n],{k1,...,kn}

)∣∣∣∣2,
which is increasing in N for each choice of I1, I2, . . .. The interchange of limit
and expectation in (4.2) thus follows from the monotone convergence theorem.

The proof that the number of points in the process is a sum of independent
Bernoulli random variables now follows as before: the fact that K is trace-class
implies that with probability one, only finitely many I j are non-zero. �

The following formulae are quite useful in analyzing the counting functions
of determinantal point processes.

Lemma 4.3 Let K : Λ × Λ → C be a continuous kernel such that the corre-
sponding operator on L2(µ) is a trace-class orthogonal projection. For D ⊆ Λ,
denote by ND the number of particles of the determinantal point process with
kernel K which lie in D. Then

END =

∫
D

K(x, x) dµ(x)

and

VarND =

∫
D

∫
Dc

∣∣∣K(x, y)
∣∣∣2 dµ(x) dµ(y).

Proof The first statement is trivial. For the second, observe that if N is the
(deterministic) total number of points in Λ

E
[
N2

D

]
= E [ND(N −NDc )] = NEND − E [NDNDc ] .
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Now,

E [NDNDc ] =

∫
D

∫
Dc
ρ2(x, y)dµ(x)dµ(y)

=

∫
D

∫
Dc

[
K(x, x)K(y, y) − K(x, y)K(y, x)

]
dµ(x)dµ(y)

= ENDENDc −

∫
D

∫
Dc

∣∣∣K(x, y)
∣∣∣2dµ(x)dµ(y),

using the fact that K(y, x) = K(x, y). Making use again of the relation NDc =

N −ND, we have from above that

E
[
N2

D

]
= (END)2 +

∫
D

∫
Dc

∣∣∣K(x, y)
∣∣∣2dµ(x)dµ(y),

and the variance formula follows. �

Exercise 4.4 Confirm that the kernels Kn and Ln of Propositions 3.7 and 3.9
satisfy the conditions of the lemma.

The following lemma, whose proof we omit, relates the limiting behavior of
the counting functions of a sequence of determinantal point processes on R to
the counting functions of a limiting process, when there is convergence of the
corresponding kernels.

Lemma 4.5 Let {KN(x, y)}N∈N be a sequence of kernels of determinantal
point processes, and suppose that there is a kernel K(x, y) such that KN(x, y)→
K(x, y) uniformly on compact sets. Let N(N)(·) denote the counting function of
the process with kernel KN and N(·) the counting function of the process with
kernel K. Let m ∈ N and let {D`}

m
`=1 be a finite collection of compact disjoint

subsets of R. Then the random vector (N(N)(D1), . . . ,N(N)(Dm)) converges in
distribution to the random vector (N(D1), . . . ,N(Dm)).

For a proof, see [1, Section 4.2.8].

Asymptotics for the eigenvalue counting function

We now return to the counting functions of the eigenvalue processes on the
classical compact groups. Consider the sine kernel

K(x, y) =
sin(π(x − y))
π(x − y)

on R. The sine kernel is the kernel, with respect to Lebesgue measure, of an
unbounded determinantal point process on R called the sine kernel process.
The most classical result on the asymptotics of the eigenvalue counts is that,



4.1 The eigenvalue counting function 105

when suitably rescaled, they converge to the sine kernel process as the matrix
size tends to infinity, as follows.

Theorem 4.6 Let {x1, . . . , xN} be the nontrivial eigenangles of a random ma-
trix distributed according to Haar measure in one of U (N), SO (2N),
SO− (2N + 2), SO (2N + 1), SO− (2N + 1), or Sp (2N), recentered and rescaled
to lie in

[
−N

2 ,
N
2

]
. For a compact set D ⊆ R, let

N(N)(D) := #{ j : x j ∈ D}.

Let χ denote the sine kernel process on R and let S(D) denote the number of
points of χ in D.

For any collection {D`}
m
`=1 of compact disjoint subsets of R, the random vec-

tor (N(N)(D1), . . . ,N(N)(Dm)) converges in distribution to the random vector
(S(D1), . . . , S(Dm)).

Proof In each case, this is an easy consequence of Lemma 4.5. First consider
the unitary case: let θ1, . . . , θN be the angles of the eigenvalues of a random
unitary matrix. By a change of variables, the kernel for the recentered, rescaled
process

{
Nθ1
2π −

N
2 , . . . ,

NθN
2π −

N
2

}
on

[
−N

2 ,
N
2

]
is given by

1
N

sin(π(x − y))

sin
(
π(x−y)

N

) −→ sin(π(x − y))
π(x − y)

as N → ∞, uniformly on compact sets.
Next consider the case of SO (2N). Let {θ1, . . . , θN} ⊆ [0, π] denote the non-

trivial eigenangles. Again by changing variables, the kernel for the recentered,
rescaled process

{
Nθ1
π
− N

2 , . . . ,
NθN
π
− N

2

}
on

[
−N

2 ,
N
2

]
is

1
N

LSO(N)
N

(
π

N
x +

π

2
,
π

N
x +

π

2

)
=

sin
((

1 − 1
2N

)
π(x − y)

)
2N sin

(
π(x−y)

2N

) +
sin

((
1 − 1

2N

)
π(x + y) + Nπ − π

2

)
2N sin

(
π(x+y)

2N + π
2

)
=

sin
((

1 − 1
2N

)
π(x − y)

)
2N sin

(
π(x−y)

2N

) −
cos

((
1 − 1

2N

)
π(x + y) + Nπ

)
2N cos

(
π(x+y)

2N

) ,

which again tends to the sine kernel uniformly on compact sets.
The remaining cases are essentially identical.

�

We now specialize to the counting functions for arcs:

Nθ = #{ j : 0 ≤ θ j ≤ θ},
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where as usual θ varies over [0, 2π] in the unitary case and θ ∈ [0, π] in all
other cases.

We begin by using Lemma 4.3 to calculate means and variances.

Proposition 4.7 1. Let U be uniform in U (N). For θ ∈ [0, 2π), let Nθ be the
number of eigenvalues angles of U in [0, θ). Then

ENθ =
Nθ
2π

.

2. Let U be uniform in one of SO (2N), SO− (2N + 2), SO (2N + 1), SO− (2N + 1),
or Sp (2N). For θ ∈ [0, π), let Nθ be the number of nontrivial eigenvalue
angles of U in [0, θ). Then ∣∣∣∣∣ENθ −

Nθ
π

∣∣∣∣∣ < 1.

Proof The equality for the unitary group follows from symmetry considera-
tions, or immediately from Proposition 3.9 and Lemma 4.3.

In the case of Sp (2N) or SO− (2N + 2), by Proposition 3.7 and Lemma 4.3,

ENθ =
1
π

∫ θ

0

N∑
j=1

2 sin2( jx) dx =
Nθ
π
−

1
2π

N∑
j=1

sin(2 jθ)
j

.

Define a0 = 0 and a j =
∑ j

k=1 sin(2kθ), and let b j = 1
j+1 . Then by summation

by parts,
N∑

j=1

sin(2 jθ)
j

=
aN

N + 1
+

N−1∑
j=1

a j

j( j + 1)
.

Trivially, |aN | ≤ N. Now observe that

a j = Im

 j∑
k=1

e2ikθ

 = Im
[
e2iθ e2i jθ − 1

e2iθ−1

]
= Im

[
ei( j+1)θ sin( jθ)

sin(θ)

]
=

sin(( j + 1)θ) sin( jθ)
sin(θ)

.

Since |a j| is invariant under the substitution θ 7→ π − θ, it suffices to assume
that 0 < θ ≤ π/2. In that case sin(θ) ≥ 2θ/π, and so

N−1∑
j=1

∣∣∣a j

∣∣∣
j( j + 1)

≤
π

2θ

 ∑
1≤ j≤1/θ

θ2 +
∑

1/θ< j≤N−1

1
j( j + 1)

 .
Clearly,

∑
1≤ j≤1/θ θ

2 ≤ θ. For the second term, note that∑
1/θ< j≤N−1

1
j( j + 1)

=
∑

1/θ< j≤N−1

(
1
j
−

1
j + 1

)
=

1
j0
−

1
N
,
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where j0 denotes the first index in the sum. That is,

N−1∑
j=1

∣∣∣a j

∣∣∣
j( j + 1)

≤
π

2θ
(θ + θ) = π.

All together, ∣∣∣∣∣ENθ −
Nθ
π

∣∣∣∣∣ ≤ 1 + π

2π
.

The other cases are handled similarly. �

Proposition 4.8 Let U be uniform in one of U (N), SO (2N), SO− (2N + 2),
SO (2N + 1), SO− (2N + 1), or Sp (2N). For θ ∈ [0, 2π) (in the unitary case)
or θ ∈ [0, π] (in all other cases), let Nθ be the number of eigenvalue angles of
U in [0, θ). For each group or coset, there is a constant c depending only on
the group or coset, such that

VarNθ ≤ c
(
log N + 1

)
.

Proof We treat the unitary case, which is the simplest, first. Note that if θ ∈
(π, 2π), then Nθ

d
= N − N2π−θ, and so it suffices to assume that θ ≤ π. By

Proposition 3.9 and Lemma 4.3,

VarNθ =
1

4π2

∫ θ

0

∫ 2π

θ

S N(x − y)2 dx dy =
1

4π2

∫ θ

0

∫ 2π−y

θ−y

sin2
(

Nz
2

)
sin2

(
z
2

) dz dy

=
1

4π2

∫ θ

0

z sin2
(

Nz
2

)
sin2

(
z
2

) dz +

∫ 2π−θ

θ

θ sin2
(

Nz
2

)
sin2

(
z
2

) dz +

∫ 2π

2π−θ

(2π − z) sin2
(

Nz
2

)
sin2

(
z
2

) dz


=

1
2π2

∫ θ

0

z sin2
(

Nz
2

)
sin2

(
z
2

) dz +

∫ π

θ

θ sin2
(

Nz
2

)
sin2

(
z
2

) dz

 ,
where the third equality follows by changing the order of integration and eval-
uating the resulting inner integrals. For the first integral, since sin

(
z
2

)
≥ z

π
for

all z ∈ [0, θ], if θ > 1
N , then

∫ θ

0

z sin2
(

Nz
2

)
sin2

(
z
2

) dz ≤
∫ 1

N

0

(πN)2z
4

dz +

∫ θ

1
N

π2

z
dz = π2

(
1
8

+ log(N) + log(θ)
)
.

If θ ≤ 1
N , there is no need to break up the integral and one simply has the bound
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(πNθ)2

8 ≤ π2

8 . Similarly, if θ < 1
N , then

∫ π

θ

θ sin2
(

Nz
2

)
sin2

(
z
2

) dz ≤
∫ 1

N

θ

θ(πN)2

4
dz +

∫ π

1
N

π2θ

z2 dz

=
π2θN

4
(1 − Nθ) + π2Nθ − πθ ≤

5π2

4
;

if θ ≥ 1
N , there is no need to break up the integral and one simply has a bound

of π2.
All together,

VarNθ ≤ log(N) +
11
16
.

The remaining cases are similar but more complicated, since the remaining
kernels from Proposition 3.9 are sums of two terms. We will sketch the proof
for SO (2N) and leave filling in the details and treating the remaining cases as
exercises for the extremely dedicated reader.

Let θ ∈ [0, π]; by Proposition 3.9 and Lemma 4.3,

VarNθ

=
1

4π2

∫ θ

0

∫ π

θ

[
S 2N−1(x − y) + S 2N−1(x + y)

]2dxdy

=
1

4π2

{∫ θ

0

∫ π

θ

[
S 2N−1(x − y)

]2dxdy

+2
∫ θ

0

∫ π

θ

S 2N−1(x − y)S 2N−1(x + y)dxdy +

∫ θ

0

∫ π

θ

[
S 2N−1(x + y)

]2dxdy
}
.

Note that the integrals are invariant under the simultaneous substitutions s =

π − x and t = π − y, and so we may assume that θ ∈
[
0, π2

]
.

Now, the first term is essentially identical to the unitary case and is bounded
in the same way by 13

32 + 1
4 log(2N − 1).

The final term is similar, but easier: one simply lets z = x + y, changes the
order of integration, and bounds the resulting integrals as in the unitary case.
The numerator can be bounded by 1 in all cases, and the resulting bound on
the third term is a constant, independent of N.
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For the cross term, making the substitutions z = x + y and w = x − y yields∫ θ

0

∫ π

θ

S 2N−1(x − y)S 2N−1(x + y)dxdy

=

∫ 2θ

θ

∫ z

2θ−z

sin
((

2N−1
2

)
z
)

sin
((

2N−1
2

)
w
)

sin
(

z
2

)
sin

(
w
2

) dwdz

+

∫ π

2θ

∫ z

z−2θ

sin
((

2N−1
2

)
z
)

sin
((

2N−1
2

)
w
)

sin
(

z
2

)
sin

(
w
2

) dwdz

+

∫ π+θ

π

∫ 2π−z

z−2θ

sin
((

2N−1
2

)
z
)

sin
((

2N−1
2

)
w
)

sin
(

z
2

)
sin

(
w
2

) dwdz.

(4.3)

To handle the first summand, first observe that w ≤ z ≤ 2θ ≤ π, and so

sin
( z
2

)
sin

(w
2

)
≥

zw
π2 .

Evaluating the resulting inner integral, if 1
2N−1 ≤ 2θ − z, estimating the numer-

ator by 1 yields∫ z

2θ−z

sin
((

2N−1
2

)
w
)

w
dw ≤ log(z) − log(2θ − z) ≤ log(π) + log(2N − 1).

If 2θ − z ≤ 1
2N−1 ≤ z, then using the estimate sin(x) ≤ x in the first part of the

interval and sin(x) ≤ 1 in the second part yields∫ z

2θ−z

sin
((

2N−1
2

)
w
)

w
dw ≤

∫ 1
2N−1

2θ−z

(
2N − 1

2

)
dw +

∫ z

1
2N−1

1
w

dw

≤
1
2

+ log(z) + log(2N − 1) ≤
1
2

+ log(π) + log(2N − 1).

Finally, if z ≤ 1
2N−1 , then using the estimate sin(x) ≤ x yields∫ z

2θ−z

sin
((

2N−1
2

)
w
)

w
dw ≤

∫ z

2θ−z

(
2N − 1

2

)
dw =

(
2N − 1

2

)
(2z − 2θ) ≤ 1.

The first term of (4.3) is thus bounded by

π2
∫ 2θ

θ

[
1
2

+ log(π) + log(2N − 1)
] sin

((
2N−1

2

)
z
)

z
dz

≤ π2
[
1
2

+ log(π) + log(2N − 1)
] ∫ 2θ

θ

1
z

dz

= π2
[
1
2

+ log(π) + log(2N − 1)
]

log(2).
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For the second term, if 1
2N−1 ≤ z − 2θ, then the inner integral is

∫ z

z−2θ

sin
((

2N−1
2

)
w
)

w
dw ≤

∫ z

z−2θ

1
w

dw = log(z) − log(z − 2θ) = log
(
1 +

2θ
z − 2θ

)
.

The right-most expression is a decreasing function of z, and so it is maximized
in this regime for z = 1

2N−1 + 2θ; that is, if 1
2N−1 ≤ z − 2θ, then

∫ z

z−2θ

sin
((

2N−1
2

)
w
)

w
dw ≤ log

(
1

2N − 1
+ 2θ

)
+log(2N−1) = log(1+2θ(2N−1)).

If z − 2θ ≤ 1
2N−1 ≤ z, then breaking up the integral as above yields

∫ z

z−2θ

sin
((

2N−1
2

)
w
)

w
dw ≤

∫ 1
2N−1

z−2θ

(
2N − 1

2

)
dw +

∫ z

1
2N−1

1
w

dw

≤
1
2

+ log(z) + log(2N − 1) =
1
2

+ log
(
z(2N − 1)

)
.

If z ≤ 1
2N−1 , then

∫ z

z−2θ

sin
((

2N−1
2

)
w
)

w
dw ≤

∫ z

z−2θ

(
2N − 1

2

)
dw = 2θ

(
2N − 1

2

)
≤ 2z

(
2N − 1

2

)
≤ 1.

If 2θ < 1
2N−1 , then the second term of (4.3) is bounded using all three estimates

above:∫ π

2θ

∫ z

z−2θ

sin
((

2N−1
2

)
z
)

sin
((

2N−1
2

)
w
)

sin
(

z
2

)
sin

(
w
2

) dwdz

≤ π2
∫ 1

2N−1

2θ

sin
((

2N−1
2

)
z
)

z
dz

+ π2
∫ 1

2N−1 +2θ

1
2N−1

[
1
2

+ log
(
z(2N − 1)

)] sin
((

2N−1
2

)
z
)

z
dz

+ π2 log(2θ(2N − 1) + 1)
∫ π

1
2N−1 +2θ

sin
((

2N−1
2

)
z
)

z
dz

Now, ∫ 1
2N−1

2θ

sin
((

2N−1
2

)
z
)

z
dz ≤

(
2N − 1

2

) (
1

2N − 1
− 2θ

)
≤

1
2
,
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and∫ 1
2N−1 +2θ

1
2N−1

[
1
2

+ log
(
z(2N − 1)

)] sin
((

2N−1
2

)
z
)

z
dz

≤

(
2N − 1

2

)
θ +

∫ 1+2θ(2N−1)

1

log(s)
s

ds ≤
1
4

+
log2(1 + 2θ(2N − 1))

2

≤
1
4

+
log2(2)

2
.

Finally,

log(2θ(2N − 1) + 1)
∫ π

1
2N−1 +2θ

sin
((

2N−1
2

)
z
)

z
dz ≤ log(2)

∫ π

1
2N−1 +2θ

1
z

dz

≤ log(2)
[
log(π) + log(2N − 1)

]
,

and so in the case that 2θ < 1
2N−1 , the second term of (4.3) is bounded by

c log(2N − 1).
If 2θ ≥ 1

2N−1 , then from the estimates above,∫ π

2θ

∫ z

z−2θ

sin
((

2N−1
2

)
z
)

sin
((

2N−1
2

)
w
)

sin
(

z
2

)
sin

(
w
2

) dwdz

≤ π2
∫ 2θ+ 1

2N−1

2θ

[
1
2

+ log(z(2N − 1))
]

1
z

dz +

∫ π

2θ+ 1
2N−1

log
(
1 +

2θ
z − 2θ

)
1
z

dz.

For the first term,∫ 2θ+ 1
2N−1

2θ

[
1
2

+ log(z(2N − 1))
]

1
z

dz ≤
[
1
2

+ log(2θ(2N − 1) + 1)
]

log
(
1 +

1
θ(2N − 1)

)
≤

[
1
2

+ log(π(2N − 1) + 1)
]

log(3).

For the second, term, using the fact that log
(
1 + 2θ

z−2θ

)
is decreasing as a

function of z,∫ π

2θ+ 1
2N−1

log
(
1 +

2θ
z − 2θ

)
1
z

dz

≤ log (1 + 2θ(2N − 1))
∫ 2(2θ+ 1

2N−1 )

2θ+ 1
2N−1

1
z

dz + log

1 +
2θ

2θ + 1
2N−1

 ∫ π

2(2θ+ 1
2N−1 )

1
z

dz

≤ log (1 + 2θ(2N − 1)) log(2) + log(2)
[
log(π) − log

(
4θ +

2
2N − 1

)]
= log(2) log

(
π

2

)
+ log(2) log(2N − 1),
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completing the bound of the second term of (4.3) in the case 2θ ≥ 1
2N−1 .

Finally, the third term of (4.3) is∫ π+θ

π

∫ 2π−z

z−2θ

sin
((

2N−1
2

)
z
)

sin
((

2N−1
2

)
w
)

sin
(

z
2

)
sin

(
w
2

) dwdz

≤
√

2π
∫ π+θ

π

∫ 2π−z

z−2θ

sin
((

2N−1
2

)
w
)

w
dwdz,

since z
2 ∈

[
π
2 ,

3π
4

]
and thus sin

(
z
2

)
≥ 1
√

2
.

Now, if 1
2N−1 ≤ z − 2θ, then∫ 2π−z

z−2θ

sin
((

2N−1
2

)
w
)

w
dw ≤ log(2π − z) − log(z − 2θ) ≤ log(2π) + log(2N − 1),

and if z − 2θ ≤ 1
2N−1 ≤ 2π − z, then∫ 2π−z

z−2θ

sin
((

2N−1
2

)
w
)

w
dw ≤

∫ 1
2N−1

z−2θ

(
2N − 1

2

)
dw +

∫ 2π−z

1
2N−1

1
w

dw

≤
1
2

+ log(2π) + log(2N − 1),

and so∫ π+θ

π

∫ 2π−z

z−2θ

sin
((

2N−1
2

)
z
)

sin
((

2N−1
2

)
w
)

sin
(

z
2

)
sin

(
w
2

) dwdz ≤
π2

√
2

[
1
2

+ log(2π) + log(2N − 1)
]
.

�

Having suffered through the analysis above, we find ourselves in a strong
position: the eigenvalue counting function Nθ of a random matrix from one
of the classical compact groups is the sum of independent Bernoulli random
variables, with explicit estimates on the mean and variance. We can thus bring
all the results of classical probability to bear, starting with the central limit
theorem.

Theorem 4.9 Let Nθ denote the eigenvalue counting function for a random
matrix distributed in one of U (N), SO (2N), SO− (2N + 2), SO (2N + 1),
SO− (2N + 1), or Sp (2N), where θ ∈ [0, 2π) forU (N) and θ ∈ [0, π] otherwise.
Then

lim
N→∞
P

[
Nθ − ENθ

Var(Nθ)
≤ t

]
=

1
√

2π

∫ t

−∞

e−x2/2dx.
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Proof Recall the Lindeberg central limit theorem: if for each n, {ξi}
n
i=1 are

independent centered random variables with s2
n = Var

(∑n
i=1 ξi

)
, then

∑n
i=1 ξi

satisfies a central limit theorem if for each ε > 0,

lim
n→∞

1
s2

n

n∑
i=1

E
[
ξ2

i 1|ξi |≥εsn

]
= 0. (4.4)

If Nθ
d
=

∑N
j=1 η j with the η j independent Bernoulli random variables as in The-

orem 4.1, then taking ξ j = η j − Eη j, the Lindeberg condition (4.4) is trivially
satisfied: since sn ∼

√
log(n) and the ξi are bounded, the expectations inside

the sum are all zero for n large enough. �

Another classical result which is perhaps less familiar but will play an im-
portant role in later sections is the following.

Theorem 4.10 (Bernstein’s inequality) Let {X j}
n
j=1 be independent random

variables such that, for each j, |X j| ≤ 1 almost surely. Let S n :=
∑n

j=1 X j and

let σ2 = Var
(∑n

j=1 X j

)
. Then for all t > 0,

P
[∣∣∣S n − E[S n]

∣∣∣ > t
]
≤ 2 exp

(
−

3t2

6σ2 + 2t

)
.

Applying Bernstein’s inequality to the eigenvalue counting functions and
using the estimates for the mean and variance obtained above gives the follow-
ing.

Theorem 4.11 Let Nθ denote the eigenvalue counting function for a random
matrix distributed in one of U (N), SO (2N), SO− (2N + 2), SO (2N + 1),
SO− (2N + 1), or Sp (2N), where θ ∈ [0, 2π) forU (N) and θ ∈ [0, π] otherwise.
Then there are constants C, c such that for all t > 0,

P
[∣∣∣∣∣Nθ −

Nθ
2π

∣∣∣∣∣ > t
]
≤ C exp

(
−

ct2

log(N) + t

)
in the unitary case, and

P
[∣∣∣∣∣Nθ −

Nθ
π

∣∣∣∣∣ > t
]
≤ C exp

(
−

ct2

log(N) + t

)
in the remaining cases.

Consider, for example, t = A log(N). Writing εG = 2 when the random
matrix is coming from G = U (N) and εG = 1 otherwise, Theorem 4.11 gives
that

P

[∣∣∣∣∣Nθ −
Nθ
εGπ

∣∣∣∣∣ > A log(N)
]
≤ CN−

cA2
A+1 ;
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that is, the Nθ is extremely likely to be within a window of size log(N) around
its mean, which is itself of order N.

4.2 The empirical spectral measure and linear eigenvalue
statistics

This section introduces two of the main approaches to studying the asymptotic
behavior of the eigenvalues: limit theorems for the empirical spectral measure
and for linear eigenvalue statistics. We begin with the first of these two.

Definition Let U be a random matrix in one of the classical compact groups
with eigenvalues λ1, . . . , λn. The empirical spectral measure µU is the random
probability measure which puts equal mass at each of the eigenvalues of U:

µU :=
1
n

n∑
j=1

δλ j .

Results on the asymptotic distribution of the eigenvalues of random matri-
ces, as the size tends to infinity, are generally formulated in terms of the limit-
ing behavior of the empirical spectral measure. Since this is a random measure,
there are various possibilities. The weakest is convergence in expectation: A
sequence µn of random probability measures on a metric measure space X con-
verges in expectation to a deterministic limit µ if for any bounded, continuous
f : X → R,

lim
n→∞
E

[∫
f dµn

]
=

∫
f dµ. (4.5)

For measures on R, this is equivalent to the condition that

lim
n→∞
Eµn((a, b]) = µ((a, b]), (4.6)

for all a ≤ b such that µ({a}) = µ({b}) = 0.
A stronger notion is that of convergence weakly in probability: a sequence

of random probability measures µn on Rn converge weakly in probability to a

measure µ on Rn (written µn
P

=⇒ µ) if for each bounded, continuous f : Rn →

R, the sequence of random variables
∫

f dµn converges in probability to
∫

f dµ,
as n tends to infinity.

There are several equivalent viewpoints; since our interest is in measures
supported on the circle, we restrict our attention there for the following lemma.

Lemma 4.12 For j ∈ Z and µ a probability measure on [0, 2π), let µ̂( j) =
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0 ei jθdµ(θ) denote the Fourier transform of µ at j. The following are equiva-

lent:

1. µn
P

=⇒ µ;

2. for each 0 ≤ a ≤ b < 2π such that µ({a}) = µ({b}) = 0, µn((a, b])
P
−→

µ((a, b]);

3. for each j ∈ Z, µ̂n( j)
P
−−−−→
n→∞

µ̂( j);

4. for every subsequence n′ in N there is a further subsequence n′′ such that
with probability one, µn′′ =⇒ µ as n→ ∞.

A still stronger notion of convergence is that of convergence weakly almost
surely: a sequence of random probability measures µn on Rn converge weakly
almost surely to a deterministic measure µ if the set on which µn converges
weakly to µ has probability one.

We have seen that there are various metrics on the set of probability mea-
sures: the Kolmogorov distance, the bounded-Lipschitz distance, the Lp Kan-
torovich distances, the total variation distance. In addition to the types of con-
vergence described above, one may of course consider the sequence of random
variables d(µn, µ) for any of these notions of distance, and show that it tends to
zero (either weakly or in probability – when the limit is a point mass, they are
equivalent).

Returning to the eigenvalue distribution of a random matrix, we saw in
Proposition 4.7 that if U is a random unitary matrix, then for any 0 ≤ θ1 ≤

θ2 < 2π,
1
n
EN[θ1,θ2] =

θ2 − θ1

2π
,

and if U is a random matrix from any of the other groups, then for any 0 ≤
θ1 ≤ θ2 < π,

1
n
EN[θ1,θ2] =

θ2 − θ1

π
+ O

(
1
n

)
.

That is, the empirical spectral measures all converge in expectation to the uni-
form measure on the circle.

In fact, the convergence happens in a much stronger sense.

Theorem 4.13 Let {µn} be the empirical spectral measures of a sequence of
random matrices {Un}, with Un drawn according to Haar measure on O (n),
U (n), or Sp (2n). Let ν denote the uniform probability measure on the circle.
Then with probability one, µn converges weakly to ν as n→ ∞.
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We will see a more recent approach to this result in Chapter 5; here, we
present the original proof of Theorem 4.13 from [36], via the explicit moment
formulae of Proposition 3.11. We will give the proof in the unitary case only;
the others are analogous.

Proof of Theorem 4.13 Let U ∈ U (n) be a random unitary matrix with eigen-
values λ1, . . . , λn, and let µn := 1

n
∑n

j=1 δλ j be the spectral measure of U. Let
ν denote the uniform probability measure on the circle. We will show that µn

converges weakly to ν with probability one by showing that, with probability
one, µ̂n( j)→ ν̂( j) for all j ∈ Z. Now,

µ̂n( j) =

∫
S1

z jdµn(z) =
1
n

n∑
k=1

λ
j
k.

Since µn is a probability measure, µ̂n(0) = 1 = ν̂(0). Moreover, since λ−1

are the eigenvalues of U−1 = U∗, which is again Haar-distributed on U (n), it
suffices to treat the case of j ≥ 1. Now, Proposition 3.11 shows that

Eµ̂n( j) = 0

and, using the fact that we may assume n ≥ j, since j is fixed and n→ ∞,

E|µ̂n( j)|2 =
1
n2E

[
Tr(U j)Tr(U j)

]
=

j
n2 .

It thus follows from Chebychev’s inequality that

P[|µ̂n( j)| > εn] ≤
j

n2ε2
n

for any εn > 0. In particular, taking εn = 1

n
1
2 −δ

for some δ ∈
(
0, 1

2

)
gives that

P

[
|µ̂n( j)| >

1

n
1
2−δ

]
≤

j
n1+2δ ,

which is summable, and so by the first Borel–Cantelli lemma, it holds with
probability one that |µ̂n( j)| ≤ 1

n
1
2 −δ

for n large enough. Taking the intersection
of these probability one sets over all j ∈ Z, we have that with probability one,
for all j ∈ Z, µ̂n( j)→ 0 as n→ ∞. �

In addition to the proof given above of the convergence of the spectral mea-
sures, Proposition 3.11 is also a key tool in the study of linear eigenvalue statis-
tics. By a linear eigenvalue statistic, we mean a function of U of the form

U 7→
n∑

j=1

f (λ j),
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where f is a test function and λ1, . . . , λn are the eigenvalues of U. The class
of test functions which works most naturally with the proof given below is the

subspace H
1
2
2 of L2(S1) of those functions f ∈ L2(S1) with

‖ f ‖21
2

=
∑
j∈Z

| f̂ j|
2| j| < ∞,

where f̂ j =
∫
S1 f (z)z− jdν(z) is the jth Fourier coefficient of f . This space is an

inner product space, with inner product given by

〈 f , g〉 1
2

=
∑
j∈Z

f̂ jĝ j| j|.

For such test functions, there is the following multivariate central limit theo-
rem for the corresponding linear eigenvalue statistics. To simplify the notation,
given a test function f , let σn( f ) :=

∑n
j=1 f (λ j), where λ1, . . . , λn are the eigen-

values of a random unitary matrix U ∈ U (n).

Theorem 4.14 (Diaconis–Evans [32]) Let f1, . . . , fk ∈ H
1
2
2 , and suppose that

E[σn( f j)] = 0 for each j ∈ 1, . . . , k. The random vector (σn( f1), . . . , σn( fk))
converges in distribution to a jointly Gaussian random vector (Y1, . . . ,Yk), with
E[Yi] = 0 for each i, and E[YiY j] =

〈
fi, f j

〉
1
2
.

The proof uses the following multivariate central limit theorem for the traces
of powers of U. It is an immediate consequence of Proposition 3.11 that for
fixed k, the random vector (Tr(U), . . . ,Tr(Uk)) converges in distribution to
(Z1,
√

2Z2, . . . ,
√

kZk), where Z1, . . . ,Zk are independent standard complex Gaus-
sian random variables, but to prove Theorem 4.14, the following stronger result
is needed.

Theorem 4.15 Let {an j}n, j∈N and {bn j}n, j∈N be arrays of complex constants.
Suppose that there exist σ2, τ2, and γ such that

lim
n→∞

∞∑
j=1

|an j|
2 min{ j, n} = σ2 lim

n→∞

∞∑
j=1

|bn j|
2 min{ j, n} = τ2

lim
n→∞

∞∑
j=1

an jbn j min{ j, n} = γ.

Suppose moreover that there is a sequence (mn)n≥1 ⊆ N such that limn→∞
mn
n =

0 and such that

lim
n→∞

∞∑
j=mn+1

(|an j|
2 + |bn j|

2) min{ j, n} = 0.
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Then the random variable
∑∞

j=1(an j Tr(U j) + bn jTr(U j)) converges in distribu-
tion (as n → ∞) to a centered complex Gaussian random variable X + iY,
with

EX2 =
1
2

(σ2 + τ2 + 2 Re(γ)) EY2 =
1
2

(σ2 + τ2 − 2 Re(γ))

EXY = Im(γ).

Proof From Theorem 3.11, ETr(U j) = 0 for each j. For N < M,

E

∣∣∣∣∣∣∣∣
M∑

j=N

(an j Tr(U j) + bn jTr(U j))

∣∣∣∣∣∣∣∣
2

=

M∑
j=N

(|an j|
2 + |bn j|

2) min{ j, n}
N,M→∞
−−−−−−→ 0,

so that
∑∞

j=1(an j Tr(U j) + bn jTr(U j)) converges in L2. Similarly,

E

∣∣∣∣∣∣∣∣
∞∑

j=mn+1

(an j Tr(U j) + bn jTr(U j))

∣∣∣∣∣∣∣∣
2

=

∞∑
j=mn+1

(|an j|
2 + |bn j|

2) min{ j, n}
n→∞
−−−−→ 0,

so that
∑∞

j=mn+1(an j Tr(U j) + bn jTr(U j)) =⇒ 0.

It is thus enough to show that
∑mn

j=1(an j Tr(U j) + bn jTr(U j)) =⇒ X + iY , for
which we use the method of moments. Since mn

n → 0, if α, β ∈ N are fixed, then
αmn, βmn ≤ n for n large enough, and for such α, β, it follows from Theorem
3.11 that

E


 mn∑

j=1

(an j Tr(U j) + bn jTr(U j))

α
 mn∑

j=1

(an j Tr(U j) + bn jTr(U j))


β

= E


 mn∑

j=1

(an j
√

jZ j + bn j
√

jZ j)

α
 mn∑

j=1

(an j
√

jZ j + bn j
√

jZ j)


β .

Writing Z j = 1
√

2
(Z j1 + iZ j2) with the Z ji i.i.d. standard Gaussians,

mn∑
j=1

(an j
√

jZ j + bn j
√

jZ j) = Xn + iYn

with

Xn =

mn∑
j=1

√
j
2

[(
Re(an j) + Re(bn j)

)
Z j1 +

(
Im(bn j) − Im(an j)

)
Z j2

]
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and

Yn =

mn∑
j=1

√
j
2

[(
Im(an j) + Im(bn j)

)
Z j1 +

(
Re(an j) − Re(bn j)

)
Z j2

]
.

The random variables Xn and Yn are thus centered and jointly Gaussian, with

EX2
n =

mn∑
j=1

( j
2

) [
(Re(an j) + Re(bn j))2 + (Im(an j) − Im(bn j))2

]
=

mn∑
j=1

( j
2

) [
|an j|

2 + |bn j|
2 + 2 Re(an jbn j)

]
,

EY2
n =

mn∑
j=1

( j
2

) [
(Re(an j) − Re(bn j))2 + (Im(an j) + Im(bn j))2

]
=

mn∑
j=1

( j
2

) [
|an j|

2 + |bn j|
2 − 2 Re(an jbn j)

]
,

and

EXnYn =

mn∑
j=1

( j
2

) [
(Re(an j) + Re(bn j))(Im(an j) + Im(bn j))

− (Re(an j) − Re(bn j))(Im(an j) − Im(bn j))
]

=

mn∑
j=1

j Im(an jbn j).

It thus follows by the assumptions on the arrays {an j} and {bn j} and the se-
quence (mn) that

EXn →
1
2

(σ2 + τ2 + 2 Re(γ)) EYn →
1
2

(σ2 + τ2 − 2 Re(γ))

and

EXnYn → Im(γ),

which completes the proof. �

Proof of Theorem 4.14 By the Cramér–Wold device, to prove the claimed
convergence it is enough to show that

k∑
j=1

t jσn( f j)
d
−→

k∑
j=1

t jY j
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for each (t1, . . . , tk) ∈ Rk. Note that
k∑

j=1

t jσn( f j) = σn(Ft),

where Ft =
∑k

j=1 t j f j. Since H
1
2
2 is a vector space, Ft ∈ H

1
2
2 , and moreover,

‖Ft‖ 1
2

=

k∑
j,`=1

t jt`
〈

f j, f`
〉

1
2

= Var

 k∑
j=1

Y j

 .
The theorem therefore follows from the k = 1 case.

The k = 1 case is simple if f (z) =
∑N

j=−N a jz j is a Laurent polynomial on S1.
Since we are assuming that f is real-valued and that σn( f ) = 0, we have that
a0 = 0 and a− j = a j. Then

σn( f ) = 2
N∑

j=1

[
Re(a j) Re(Tr(U j)) − Im(a j) Im(Tr(U j))

]
,

which tends to the Gaussian random variable

2
N∑

j=1

Re(a j)

√
j
2

Z j1 − Im(a j)

√
j
2

Z j2

 ,
where (Z11,Z12, . . . ,Zk1,Zk2) are i.i.d. standard (real) Gaussians. That is, σn( f )
converges to a centered Gaussian random variable with variance

σ2 = 4
N∑

j=1

( j
2

)
(Re(a j)2 + Im(a j)2) =

N∑
j=−N

| j||a j|
2 = ‖ f ‖21

2
.

For a general f ∈ H
1
2
2 , the full strength of Theorem 4.15 is needed. First, for

N ∈ N define

fN :=
N∑

j=−N

f̂ jz j

and note that, since f ∈ L2(S1), ‖ fN − f ‖2 → 0. It follows from symmetry
that for any measurable subset A ⊆ S1, the probability that U has at least one
eigenvalue in A is at most nν(A), where ν is the uniform probability measure
on S1, and so if An,ε denotes the set on which | f − fN | >

ε
n , then

P[|σn( f )−σn( fN)| > ε] = P


∣∣∣∣∣∣∣

n∑
`=1

( f (λ`) − fn(λ`))

∣∣∣∣∣∣∣ > ε
 ≤ nν(An,ε) ≤

n3‖ f − fN‖
2
2

ε2 ,

which tends to zero as N tends to infinity. That is, σn( fN) converges in proba-
bility to σn( f ), as N tends to infinity.
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On the other hand, the condition on f together with Theorem 3.11 means
that

∞∑
j=1

f̂ j Tr(U j) +

∞∑
j=1

f̂ jTr(U j)

converges in L2:

E

∣∣∣∣∣∣∣∣
M∑

j=N

f̂ j Tr(U j)

∣∣∣∣∣∣∣∣
2

=

M∑
j=N

| f̂ j|
2 min{ j, n}

N,M→∞
−−−−−−→ 0.

This allows us to write

σn( f ) =

∞∑
j=1

f̂ j Tr(U j) +

∞∑
j=1

f̂ jTr(U j).

(Note that the corresponding formula for σn( f ) in terms of traces of powers of
U was trivial in the case that f was a Laurent polynomial because the sums
needing to be interchanged were both finite, so that convergence issues played
no role.)

We now apply Theorem 4.15 with a jn = f̂ j and b jn = f̂ j:
∞∑
j=1

|a jn|
2 min{ j, n} =

∞∑
j=1

|b jn|
2 min{ j, n} =

∞∑
j=1

an jbn j min{ j, n}

=

∞∑
j=1

| f̂ j|
2 j +

∞∑
j=n+1

(n − j)| f̂ j|
n→∞
−−−−→ ‖ f ‖21

2
,

and as long as mn → ∞, then
∞∑

j=mn+1

(|an j|
2 + |bn j|

2) min{ j, n} =

∞∑
j=mn+1

(2| f̂ j|
2) min{ j, n}

n→∞
−−−−→ 0.

It thus follows from Theorem 4.15 that σn( f ) converges to a centered Gaussian
random variable with variance ‖ f ‖21

2
, as desired.

�

4.3 Patterns in eigenvalues: self-similarity

Consider the special case of m = 2 in Theorem 3.14: the eigenvalues of the
square of a 2n× 2n random unitary matrix are identical in distribution to those
of two independent n× n random unitary matrices. Since the squaring function
has the effect of wrapping the circle in the complex plane twice around, this
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means that wrapping the eigenvalues of a 2n × 2n unitary matrix twice around
the circle produces two independent copies of the eigenvalues of a half-sized
random matrix. It is tempting to see those two copies as corresponding to the
eigenvalues of the original matrix from the top half of the circle and those from
the bottom half; if this were true, it would be a kind of self-similarity statement
for unitary eigenvalues. Of course, there cannot be exact equality of distribu-
tions due to edge effects, but one could hope for some weaker result along
these lines which avoided such effects. Indeed, a closely related self-similarity
phenomenon was conjectured by Coram and Diaconis in their statistical analy-
sis of unitary eigenvalues [24]: they asked whether taking half (sequentially) of
the eigenvalues and stretching them out to fill the whole circle would produce
something “statistically indistinguishable” from the eigenvalues of a half-sized
matrix.

The following result gives exactly such a self-similarity phenomenon on a
certain mesoscopic scale.

Theorem 4.16 For m, n ≥ 1, let {θ j}
n
j=1 be the eigenangles of a random n × n

unitary matrix and let {θ(m)
j }

nm
j=1 be the eigenangles of a random nm×nm unitary

matrix, with θ j, θ
(m)
j ∈ [−π, π) for each j. For A ⊆ [−π, π), let

NA :=
∣∣∣{ j : θ j ∈ A

}∣∣∣ N
(m)
A :=

∣∣∣∣∣{ j : θ(m)
j ∈

[
−
π

m
,
π

m

)
,mθ(m)

j ∈ A
}∣∣∣∣∣ ;

that is, NA is the counting function of a random n×n unitary matrix, and N
(m)
A is

the counting function for the point process obtained by taking the eigenvalues
of a random nm × nm unitary matrix lying in the arc of length 2π

m centered at
z = 1 and raising them to the mth power.

Suppose that A has diam(A) ≤ π. Then

dTV (NA,N
(m)
A ) ≤ W1(NA,N

(m)
A ) ≤

√
mn|A| diam(A)

12π
,

where |A| denotes the Lebesgue measure of A.

As a consequence of Theorem 4.16, if {An} is a sequence of sets such that
either diam An = o(n−1/4) or |An| = o(n−1/2) as n→ ∞, then

dTV

(
NAn ,N

(m)
An

)
,W1

(
NAn ,N

(m)
An

)
→ 0.

Thus indeed, a sequential arc of about n of the nm eigenvalues of an nm × nm
random matrix is statistically indistinguishable, on the scale of o(n−1/4) for
diameter or o(n−1/2) for Lebesgue measure, from the n eigenvalues of an n × n
random matrix.
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How sharp the bound above is remains an open question. It seems likely that
the restriction on the diameter of A is an artifact of the proof; this may also be
the case for the factor of

√
n in the bound.

A remarkable feature of Theorem 4.16 is that it yields microscopic informa-
tion even at a mesoscopic scale: if 1

n � diam An �
1

n1/4 , then NAn and N
(m)
An

both have expectations and variances tending to infinity. Typically, there is no
hope in looking at individual points in such a setting, and instead one stud-
ies statistical properties of the recentered and rescaled counts. Theorem 4.16
makes a direct point-by-point comparison of the two point processes, with no
rescaling.

The proof of Theorem 4.16 is based on the determinantal structure of the two
point processes. Let χ denote the point process given by the eigenvalues of an
n × n random unitary matrix, and let χ(m) be the process given by restricting
the eigenvalue process of a random mn×mn matrix to

[
−π
m ,

π
m

)
and rescaling by

m. Recall from Section 3.1 that χ is a determinantal point process; it follows
easily that χ(m) is as well, with kernel as follows.

Proposition 4.17 The point process χ(m) on [0, 2π) is determinantal with ker-
nel

K(m)
n (x, y) =

1
2π

sin
(

n(x−y)
2

)
m sin

(
(x−y)

2m

) .
with respect to Lebesgue measure.

Proof The case m = 1 is given in Section 3.1. The general case follows from
a change of variables which shows that K(m)

n (x, y) = Kmn
( x

m ,
y
m
)
. �

The main technical ingredient for the proof of Theorem 4.16 is the following
general result on determinantal point processes.

Proposition 4.18 Let N and Ñ be the total numbers of points in two deter-
minantal point processes on (Λ, µ) with conjugate-symmetric kernels K, K̃ ∈
L2(µ ⊗ µ), respectively. Suppose that N, Ñ ≤ N almost surely. Then

dTV (N, Ñ) ≤ W1(N, Ñ) ≤

√
N

∫ ∫ ∣∣∣K(x, y) − K̃(x, y)
∣∣∣2 dµ(x)dµ(y).

Proof Note first that an indicator function of a set A of integers is 1-Lipschitz
on Z, and so for X and Y integer-valued,

dTV (X,Y) ≤ W1(X,Y); (4.7)

it therefore suffices to prove the second inequality.
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Let {λ j} and {̃λ j} be the eigenvalues, listed in nonincreasing order, of the
integral operators K and K̃ with kernels K and K̃ respectively. Since N, Ñ ≤ N,
by Theorem 4.1 we may assume that j ≤ N. Let {Y j}

N
j=1 be independent random

variables uniformly distributed in [0, 1]. For each j, define

ξ j = 1Y j≤λ j and ξ̃ j = 1Y j≤λ̃ j
.

It follows from Theorem 4.1 that

N
d
=

N∑
j=1

ξ j, Ñ
d
=

N∑
j=1

ξ̃ j,

so this gives a coupling of N and Ñ. It then follows from the Kantorovich–
Rubenstein theorem that

W1(N, Ñ) ≤ E

∣∣∣∣∣∣∣∣
N∑

j=1

ξ j −

N∑
j=1

ξ̃ j

∣∣∣∣∣∣∣∣ ≤
N∑

j=1

E
∣∣∣ξ j − ξ̃ j

∣∣∣ =

N∑
j=1

∣∣∣λ j − λ̃ j

∣∣∣ ≤
√√√

N
N∑

j=1

∣∣∣λ j − λ̃ j

∣∣∣2.
(4.8)

For n × n Hermitian matrices A and B, the Hoffman–Wielandt inequality (see,
e.g., [11, Theorem VI.4.1]) says that

n∑
j=1

∣∣∣λ j(A) − λ j(B)
∣∣∣2 ≤ ‖A − B‖2HS , (4.9)

where λ1(A), . . . , λn(A) and λ1(B), . . . , λn(B) are the eigenvalues (in nonin-
creasing order) of A and B respectively. It thus follows that√√√ N∑

j=1

∣∣∣λ j − λ̃ j

∣∣∣2 ≤ ∥∥∥∥K − K̃∥∥∥∥
H.S .

,

where ‖·‖H.S . denotes the Hilbert–Schmidt norm. The result now follows from
the general fact that the Hilbert–Schmidt norm of an integral operator on L2(µ)
is given by the L2(µ ⊗ µ) norm of its kernel (see [109, pg. 245]). �

Proof of Theorem 4.16 For every 0 ≤ ϕ ≤ π
2 ,

ϕ −
1
6
ϕ3 ≤ sinϕ ≤ m sin

(
ϕ

m

)
≤ ϕ,

and so

0 ≤
1

sinϕ
−

1

m sin
(
ϕ
m

) ≤ 1
ϕ − 1

6ϕ
3
−

1
ϕ

=
ϕ

6 − ϕ2 ≤
ϕ

3
.
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Thus by Propositions 4.17 and 4.18,

W1(NA,N
(m)
A ) ≤

√√√√
mn

(2π)2

∫
A

∫
A

sin2
(

n(x − y)
2

)  1

sin
(

x−y
2

) − 1

m sin
(

x−y
2m

) 2

dx dy

≤
1

12π

√
mn

∫
A

∫
A
(x − y)2 dx dy

≤
1

12π
√

mn |A| diam A.

�

4.4 Large deviations for the empirical spectral measure

Large deviations theory is a branch of probability dealing with rare events. The
basic idea is the following. Suppose that X1, X2, . . . are i.i.d. random variables
with EX1 = 0 and EX2

1 = 1, and let S n :=
∑n

j=1 X j. By the law of large num-
bers, 1

n S n should be close to zero, but of course it is not typically exactly zero;
the goal is to understand the rare event that

∣∣∣ 1
n S n

∣∣∣ > δ for some δ > 0 fixed. By
the central limit theorem, 1

n S n is approximately distributed as a centered Gaus-
sian random variable with variance 1

n , and so if Z denotes a standard Gaussian
random variable, then

P

[∣∣∣∣∣1nS n

∣∣∣∣∣ > δ] ≈ P[|Z| > δ√n
]

=
2
√

2π

∫ ∞

δ
√

n
e−

x2
2 dx.

Using standard asymptotics for the tail of a Gaussian integral,

1
n

logP
[
|Z| > δ

√
n
] n→∞
−−−−→ −

δ2

2
.

This limit can be loosely interpreted as saying that the probability that
∣∣∣∣ 1
√

n Z
∣∣∣∣ >

δ is of the order e−
nδ2

2 .
The question is then whether it also holds that

1
n

logP
[∣∣∣∣∣1nS n

∣∣∣∣∣ > δ] n→∞
−−−−→ −

δ2

2
. (4.10)

The answer (given by Cramér’s theorem) is “sort of”: the limit in (4.10) exists,
but rather than being given by a universal function of δ, its value depends on
the distribution of the summands.

Statements like (4.10) are what is meant when one refers to large deviations,
although typical theorems are formulated somewhat differently. Below, we give
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the basic definitions and terminology used in the context of large deviations for
sequences of Borel probability measures on a topological space X.

Definitions 1. A rate function I is a lower semicontinuous1 function I :
X → [0,∞].

2. A good rate function is a rate function for which all level sets I−1([0, α])
(α < ∞) are compact.

3. A sequence of Borel measures {νn}n∈N on X satisfies a large deviations
principle (LDP) with rate function I and speed sn if for all Borel sets Γ ⊆

X,

− inf
x∈Γ◦

I(x) ≤ lim inf
n→∞

1
sn

log(νn(Γ))

≤ lim sup
n→∞

1
sn

log(νn(Γ)) ≤ − inf
x∈Γ

I(x),
(4.11)

where Γ◦ is the interior of Γ and Γ is the closure of Γ.
If the upper bound in (4.11) is required to hold only when Γ is compact,

the sequence {νn}n∈N satisfies a weak LDP.

The somewhat complicated form of a large deviations principle, as com-
pared with, e.g. (4.10), has the advantage of being precise enough to be useful
while weak enough to have some chance of holding in situations of interest.

The following gives an indirect approach for establishing the existence of a
weak LDP.

Theorem 4.19 Let {νn}n∈N be a sequence of Borel measures on X and, and
for each n, let sn > 0. Let A be a base for the topology of X. For x ∈ X, define

I(x) := sup
A∈A:x∈A

[
− lim inf

n→∞

1
sn

log νn(A)
]
.

Suppose that for all x ∈ X,

I(x) = sup
A∈A:x∈A

[
− lim sup

n→∞

1
sn

log νn(A)
]
.

Then {νn}n∈N satisfies a weak LDP with rate function I and speed sn.

The logarithmic energy

Let ν be a measure on C. The quantity

E(ν) := −
"

log |z − w|dν(z)dν(w)

1 i.e., for all α ∈ [0,∞), the level set I−1([0, α]) is closed in X.
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is called (in potential theory) the logarithmic energy of ν; the same quantity
appears in free probability as (the negative of) the free entropy. As suggested
by the following lemma, this energy functional will play a key role in the LDP
for empirical spectral measures.

Lemma 4.20 Let P(S1) denote the space of Borel probability measures on
S1, endowed with the topology of convergence in distribution. The logarithmic
energy E is a strictly convex rate function on P(S1) and the uniform probability
measure ν0 is the unique ν ∈ P(S1) with E(ν) = 0.

Proof Firstly, if ν0 is the uniform probability measure on S1, then

E(ν0) = −
1

(2π)2

∫ 2π

0

∫ 2π

0
log |eiθ − eiφ|dθdφ = −

1
2π

∫ 2π

0
log |1 − eiθ|dθ = 0.

The fact that ν0 is the unique element ν ∈ P(S1) with E(ν) = 0 will be shown
below.

Both the nonnegativity and strict convexity of E are most easily seen within
the context of positive- and negative-definite kernels. A Hermitian kernel L(x, y)
on C × C is called positive definite if∑

j,k

c jckL(x j, xk) ≥ 0

for all c1, . . . , cn ∈ C. A Hermitian kernel L(x, y) on C×C is called (condition-
ally) negative definite if ∑

j,k

c jckL(x j, xk) ≤ 0

for all c1, . . . , cn ∈ C such that
∑n

j=1 c j = 0. Obviously the negative of a positive
definite kernel is negative definite, but the negative of a negative definite kernel
need not be positive definite. Note that sums or integrals of positive (resp.
negative) definite kernels are positive (resp. negative) definite.

Given a negative-definite kernel on C × C and a finite signed measure µ on
C with µ(C) = 0, it follows by approximating µ by discrete measures that"

L(z,w)dµ(x)dµ(w) ≤ 0.

Our interest is in this last statement, for the singular kernel K(z,w) = log |z−w|.
To avoid the singularity, define for each ε > 0 the kernel

Kε(z,w) := log(ε + |z − w|) =

∫ ∞

0

(
1

1 + t
−

1
t + ε + |z − w|

)
dt. (4.12)
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Now, the kernel

(z,w) 7→
1

t + ε + |z − w|

is positive definite for each t and ε: the Laplacian kernel (z,w) 7→ e−s|z−w| is
known to be positive definite for each s > 0, and

1
t + ε + |z − w|

=

∫ ∞

0
e−s(t+ε+|z−w|)ds

is therefore the integral of positive definite kernels, hence positive definite. It is
easy to see that a constant kernel is conditionally negative definite, and so the
integrand in (4.12) is conditionally negative definite for each t, which finally
gives that Kε(z,w) is conditionally negative definite for each ε > 0. It thus
follows that "

Kε(z,w)dµ(z)dµ(w) ≤ 0.

For ε < 1
2 , |Kε(z,w)| ≤ |K(z,w)|+ log(2), and so if E(µ) < ∞, then it follows by

the dominated convergence theorem that

E(µ) = −

"
K(z,w)dµ(z)dµ(w) ≥ 0.

We are, of course, not interested in signed measures of total mass 0, but
in probability measures on S1. Given a probability measure ν on S1, let µ =

ν−ν0, where ν0 is the uniform probability measure on S1. Then by the argument
above,"

K(z,w)dµ(z)dµ(w) = −E(ν) − 2
"

K(z,w)dν(z)dν0(w) − E(ν0) ≤ 0.

It has already been shown that E(ν0) = 0, and so the above inequality reduces
to

E(ν) ≥ −2
"

K(z,w)dν(z)dν0(w).

But "
K(z,w)dν(z)dν0(w) =

∫
S1

(
1

2π

∫ 2π

0
log |z − eiθ|dθ

)
dν(z) = 0,

which proves the nonnegativity of E(ν).
To prove the convexity of E, let ν1 and ν2 be distinct probability measures

on S1 with finite logarithmic energy. By a similar argument to the one proving
the nonnegativity of E,"

K(z,w)d(ν1−ν2)(z)d(ν1−ν2)(w) = −E(ν1)−2
"

K(z,w)dν1(z)dν2(w)−E(ν2) ≤ 0,
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so that

E(ν1, ν2) := −
"

log |z − w|dν1(z)dν2(w) ≤
1
2

(E(ν1) + E(ν2)) < ∞.

Moreover, for 0 < λ < 1,

E(λν1 + (1 − λ)ν2) = E(ν2) + 2λE(ν2, ν1 − ν2) + λ2E(ν1 − ν2).

It follows that

d2

dλ2 E(λν1 + (1 − λ)ν2) = 2E(ν1 − ν2) ≥ 0.

This shows that E is convex. To show strict convexity, we will show that the
only compactly supported finite signed measure ν of total mass 0 on C with
E(ν) = 0 is the zero measure; this in particular implies that E(ν1 − ν2) > 0
above, since ν1 and ν2 are distict.

Since ν(C) = 0, if 0 < ε < R < ∞, then

−

∫ R

ε

("
1

t + |z − w|
dν(z)dν(w)

)
dt

=

∫ R

ε

(" (
1

1 + t
−

1
t + |z − w|

)
dν(z)dν(w)

)
dt

=

" (
log(ε + |z − w|) + log

(
1 + R

R + |z − w|

)
− log(1 + ε)

)
dν(z)dν(w).

We have shown above that (z,w) 7→ 1
t+|z−w| is a positive definite kernel for

each t, so that "
1

t + |z − w|
dν(z)dν(w) ≥ 0

for each t. The monotone convergence theorem then justifies taking the limit
above as ε → 0 and R→ ∞:

lim
ε→0

lim
R→∞

∫ R

ε

("
1

t + |z − w|
dν(z)dν(w)

)
dt =

∫ ∞

0

("
1

t + |z − w|
dν(z)dν(w)

)
dt.

On the other hand, we have argued above that

lim
ε→0

"
log(ε + |z − w|)dν(z)dν(w) = E(ν)(= 0),

and "
log(1 + ε)dν(z)dν(w) = 0
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for all ε > 0, since ν(C) = 0. Finally,

lim
R→∞

"
log

(
1 + R

R + |z − w|

)
dν(z)dν(w) = 0

by the dominated convergence theorem, since ν is assumed to be compactly
supported. We thus have that∫ ∞

0

("
1

t + |z − w|
dν(z)dν(w)

)
dt = 0,

and because the inner double integral is a nonnegative function of t, this means
that "

1
t + |z − w|

dν(z)dν(w) = 0

for all t > 0.
Write

1
t + |z − w|

=
1
t

∞∑
n=0

(
−
|z − w|

t

)n

= s
∞∑

n=0

(−s|z − w|)n,

with s = 1
t . We have from above that" ∞∑

n=0

(−s|z − w|)ndν(z)dν(w) = 0

for each s. The n = 0 term integrates to 0 on its own, since ν(C) = 0. Since
ν is compactly supported, given ε > 0, we can choose s = ε

diam(supp(ν)) so that∑∞
n=2(s|z − w|)n < ε2

1−ε . But then∣∣∣∣∣" |z − w|dν(z)dν(w)
∣∣∣∣∣

=

∣∣∣∣∣∣∣1s
" ∞∑

n=2

(−s|z − w|)ndν(z)dν(w)

∣∣∣∣∣∣∣ < ε diam(supp(ν))(|ν|(C))2

1 − ε
;

i.e.,
!
|z − w|dν(z)dν(w) = 0. Iterating this argument gives that"

|z − w|ndν(z)dν(w) = 0

for all n ∈ N. In particular, considering even powers gives that for all n ≥ 0,

0 =

"
(z − w)n(z − w)ndν(z)dν(w)

=

n∑
j,k=0

(
n
j

)(
n
k

) (∫
z jzkdν(z)

) (∫
(−w)n− j(−w)n−kdν(w)

)
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Exercise 4.21 Prove by induction that this last equality implies that
!

z jzkdν(z) =

0 for all j, k.

Since ν is compactly supported, the monomials {z jzk
} span a dense subset of

the continuous functions on the support of ν, and so the result of the exercise
shows that ν = 0.

All that remains is to show that E is lower semicontinuous. Let

F(ζ, η) := − log |ζ − η|

and for α > 0, let

Fα(ζ, η) := min{F(ζ, η), α}.

Then Fα is a bounded, continuous function on S1 × S1. Given a bounded con-
tinuous function g, the mapping

µ 7→

∫
gdµ

is continuous by definition, and the mapping µ 7→ µ × µ is also continuous, so

µ 7→

"
S1×S1

Fα(ζ, η)dµ(ζ)dµ(η)

is continuous on P(S1). By the monotone convergence theorem,

E(µ) =

"
F(ζ, η)dµ(ζ)dµ(η) = sup

α>0

"
Fα(ζ, η)dµ(ζ)dµ(η);

that is, E is the supremum of continuous functions and hence lower semicon-
tinuous.

�

Empirical spectral measures

Let µn denote the empirical spectral measure of a random unitary matrix U ∈
U (n). Then µn is a random element of the (compact) topological space P(S1)
(with the topology of convergence in distribution). Let Pn denote the distribu-
tion of µn in P(S1); it is for these Pn that the LDP holds, as follows.

Theorem 4.22 (Hiai–Petz) Let Pn denote the distribution of the empirical
spectral measure of a Haar-distributed random unitary matrix in U (n). The
sequence {Pn}n∈N of measures on P(S1) as defined above satisfies an LDP with
speed n2 and rate function given by the logarithmic energy E.
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Proof It is a consequence of Alaoglu’s theorem that P(S1) is compact in the
weak-* topology, and so the existence of a weak LDP is the same as the full
LDP. We thus proceed via Theorem 4.19: we show that

E(µ) ≥ sup
A∈A:µ∈A

[
− lim inf

n→∞

1
n2 logPn(A)

]
. (4.13)

and

E(µ) ≤ sup
A∈A:µ∈A

[
− lim sup

n→∞

1
n2 logPn(A)

]
. (4.14)

As above, let

F(ζ, η) := − log |ζ − η|

and for α > 0, let

Fα(ζ, η) := min{F(ζ, η), α},

so that

E(µ) =

"
F(ζ, η)dµ(ζ)dµ(η) = sup

α>0

"
Fα(ζ, η)dµ(ζ)dµ(η).

Given a vector φ = (φ1, . . . , φn) ∈ [0, 2π]n, let

µφ =
1
n

n∑
j=1

δeiφ j .

Let µ ∈ P(S1) and let A be a neighborhood of µ. Define

A0 := {φ ∈ [0, 2π]n : µφ ∈ A}.

Then by the Weyl integration formula (Theorem 3.1), for any α > 0,

Pn(A) =
1

(2π)nn!

(
A0

∏
1≤ j<k≤n

|eiφ j − eiφk |2dφ1 · · · dφn

=
1

(2π)nn!

(
A0

exp

−∑
j,k

F(eiφ j , eiφk )

 dφ1 · · · dφn

≤
1

(2π)nn!

(
A0

exp

−∑
j,k

Fα(eiφ j , eiφk )

 dφ1 · · · dφn

=
1

(2π)nn!

(
A0

exp
{
−n2
"

Fα(eix, eiy)dµφ(x)dµφ(y) + αn
}

dφ1 · · · dφn

≤
eαn

n!
exp

{
−n2 inf

ρ∈A

"
Fα(ζ, η)dρ(ζ)dρ(η)

}
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Taking logarithms, dividing by n2, and taking the limit superior of both sides
gives that

lim sup
n→∞

1
n2 logPn(A) ≤ − inf

ρ∈A

"
Fα(ζ, η)dρ(ζ)dρ(η),

so that

sup
A∈A,µ∈A

[
− lim sup

n→∞

1
n2 logPn(A)

]
≥ sup

A∈A,µ∈A

[
inf
ρ∈A

"
Fα(ζ, η)dρ(ζ)dρ(η)

]
.

Recall that for each α > 0, ρ 7→
!

Fα(ζ, η)dρ(ζ)dρ(η) is continuous, so that
for any ε > 0, we can choose Aε a neighborhood of µ such that

inf
ρ∈Aε

"
Fα(ζ, η)dρ(ζ)dρ(η) ≥

"
Fα(ζ, η)dµ(ζ)dµ(η) − ε.

Letting ε → 0 and then α→ ∞ shows that

sup
A∈A,µ∈A

[
− lim sup

n→∞

1
n2 logPn(A)

]
≥

"
F(ζ, η)dµ(ζ)dµ(η) = E(µ),

and so (4.14) is proved.
To prove (4.13), we make use of a regularization of µ via the Poisson kernel.

Specifically, for 0 < r < 1, let

Pr(θ) =
1 − r2

1 − 2r cos(θ) + r2 .

If

fr(eiθ) = [Pr ∗ µ](eiθ) =

∫
S1

Pr(θ − arg(ζ))dµ(ζ)

and µr is the probability measure on S1 with density fr, then fr is continuous

and strictly positive, µr ⇒ µ as r → 1, and E(µr)
r→1
−−−→ E(µ) (for details, see

[52]).
Let δ > 0 be such that δ ≤ fr(z) ≤ δ−1 for z ∈ S1. Since fr is strictly positive,

the function

θ 7→
1

2π

∫ θ

0
fr(eit)dt

is invertible; let ϕ : [0, 1] → [0, 2π] denote the inverse. Then for each n ∈ N
and j ∈ {1, . . . , n}, define

0 = b(n)
0 < a(n)

1 < b(n)
1 < · · · < a(n)

n < b(n)
n = 2π

by

a(n)
j = ϕ

 j − 1
2

n

 b(n)
j = ϕ

( j
n

)
,
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and note that this implies that for all j = 1, . . . , n,

πδ

n
≤

(
b(n)

j − a(n)
j

)
≤

π

nδ
πδ

n
≤

(
a(n)

j − b(n)
j−1

)
≤

π

nδ
.

Let

∆n :=
{
(θ1, . . . , θn) : a(n)

j ≤ θ j ≤ b(n)
j , 1 ≤ j ≤ n

}
and suppose that φ = (φ1, . . . , φn) ∈ ∆n. Let g : S1 → R have ‖g‖BL ≤ 1 (recall
that ‖g‖BL is the maximum of the supremum norm and the Lipschitz constant
of g). Then∣∣∣∣∣∫
S1

g(z)dµφ(z) −
∫
S1

g(z)dµr(z)
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣1n
n∑

j=1

g(eiφ j ) −
1

2π

n∑
j=1

∫ b(n)
j

b(n)
j−1

g(eiθ) fr(eiθ)dθ

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
n∑

j=1

1
2π

∫ b(n)
j

b(n)
j−1

(
g(eiφ j ) − g(eiθ)

)
fr(eiθ)dθ

∣∣∣∣∣∣∣∣
≤ max

1≤ j≤n

∣∣∣b(n)
j − b(n)

j−1

∣∣∣
≤

2π
nδ
.

Since the bounded-Lipschitz distance is a metric for the topology of conver-
gence in distribution, this means that for any neighborhood A of µr, for n large
enough,

∆n ⊆ A0 = {φ : µφ ∈ A}.

Writing

m(n)
jk := min

{
|eis − eit | : a(n)

j ≤ s ≤ b(n)
j , a

(n)
k ≤ t ≤ b(n)

k

}
,

it now follows from the Weyl integration formula that

Pn(A) =
1

(2π)nn!

(
A0

∏
1≤ j<k≤n

|eiφ j − eiφk |2dφ1 · · · dφn

≥
1

(2π)nn!

(
∆n

∏
1≤ j<k≤n

|eiφ j − eiφk |2dφ1 · · · dφn

≥
1

(2π)nn!

∏
1≤ j<k≤n

[
m(n)

jk

]2
∫ b(n)

1

a(n)
1

· · ·

∫ b(n)
n

a(n)
n

dφ1 · · · dφn

≥
1
n!

(
δ

2n

)n ∏
1≤ j<k≤n

[
m(n)

jk

]2
,
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since b(n)
n −a(n)

j ≥
πδ
n . Taking logarithms, diving by n2, and taking limits inferior

thus gives

lim inf
n→∞

1
n2 logPn(A) ≥ lim inf

n→∞

2
n2

∑
1≤ j< j≤n

log(m(n)
jk ).

Since ϕ is increasing with a(n)
j =

j− 1
2

n and b(n)
j =

j
n ,

lim
n→∞

2
n2

∑
1≤ j<k≤n

log(m(n)
jk ) = lim

n→∞


2
n2

∑
1≤ j<k≤n

log


min

j− 1
2

n ≤u≤ j
n

k− 1
2

n ≤v≤ k
n

∣∣∣eiϕ(u)
− eiϕ(v)

∣∣∣



= 2
"

0≤u<v≤1
log

∣∣∣eiϕ(u)
− eiϕ(v)

∣∣∣ dudv

=
1

(2π)2

∫ 2π

0

∫ 2π

0
fr(eis) fr(eit) log |eis − eit |dsdt

= −E(µr),

where the convergence of the Riemann sums to the integral is valid because
the integrand is bounded below by log

(
δ
n

)
.

We thus have that for any neighborhood A of µr,

− lim inf
n→∞

1
n2 logPn(A) ≤ E(µr).

Since µr ⇒ µ, this also holds for any neighborhood A of µ, for r close enough
to 1, so that

sup
A∈A,µ∈A

[
− lim inf

n→∞

1
n2 logPn(A)

]
≤ lim sup

r→1
E(µr) = E(µ).

This completes the proof of (4.13).
�

Notes and References

The paper [56] of Hough–Krishnapur–Peres–Virág gives a beautiful survey on
determinantal point processes with many applications; this paper is in particu-
lar the source of Theorem 4.1 and its proof.

Theorem 4.9 and a multivariate generalization were proved by Wieand [108],
by exploiting the connection with Toeplitz matrices. She showed the following.
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Theorem 4.23 (Wieand) Let U be a Haar-distributed random matrix inU (n).
For 0 ≤ α < β < 2π, let N(n)

α,β denote the number of eigenangles of U lying in
[α, β]. The finite-dimensional distributions of the process

π√
log(n)

(
N

(n)
α,β − EN

(n)
α,β

)
0≤α<β<2π

converge to those of a centered Gaussian process
{
Zα,β

}
0≤α<β<2π

with covari-
ance

E
[
Zα,βZα′,β′

]
=



1, α = α′, β = β′;
1
2 , α = α′, β , β′;
1
2 , α , α′, β = β′;

− 1
2 , β = α′;

0, otherwise.

These surprising correlations have been the result of further study, in partic-
ular by Diaconis and Evans [32] and Hughes, Keating, and O’Connell [57]. In
[97], Soshnikov proved univariate central limit theorems for local and global
statistics of eigenvalues of random matrices from the classical compact groups.

Fast rates of convergence in the univariate central limit theorem for Tr(Uk)
for k fixed and U distributed according to Haar measure were found for U ∈
O (n) by Stein [98] and Johansson [61]. Johansson also found rates of conver-
gence in the unitary and symplectic cases; his results are as follows.

Theorem 4.24 (Johansson [61]) Let U ∈ G(n) where G(n) is one of O (n),
U (n), and Sp (2n). Let k ∈ N and let

Xk =
1
√

k

(
Tr(Uk) − ETr(Uk)

)
.

There are positive constants Ci and δi (1 ≤ i ≤ 3), independent of n, such that
the following hold.

1. For U distributed according to Haar measure on U (n), and Z a standard
complex Gaussian random variable,

dTV (Xk,Z) ≤ C1n−δ1n.

2. For U distributed according to Haar measure on O (n), and Z a standard
(real) Gaussian random variable,

dTV (X,Z) ≤ C2e−δ2n.
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3. For U distributed according to Haar measure on Sp (2n), and Z a standard
complex Gaussian random variable,

dTV (X,Z) ≤ C3e−δ3n.

Rates of convergence in the multivariate case were obtained by Döbler and
Stolz [38] via Stein’s method, following work of Fulman [47].

In the paper [32] of Diaconis and Evans, they did further work to expand the

class of test functions from H
1
2
2 so as to prove multivariate limit theorems for

the number of eigenvalues in an arc, which in particular recovered Wieand’s
result above.

For a general introduction to the theory of large deviations, see the book
[30] of Dembo and Zeitouni. The large deviations principle for the empirical
spectral measure (Theorem 4.22) is due to Hiai and Petz [52] (see also their
book [53]), and we have followed their proof fairly closely, with background
on the logarithmic energy taken from [10] and [70].



5
Concentration of measure

5.1 The concentration of measure phenomenon

The phenomenon of concentration of measure arises frequently as a tool in
probability and related areas; following its use by Vitali Milman in his proba-
bilistic proof of Dvoretzky’s theorem, the explicit study and more systematic
exploitation of this phenomenon has become a large and influential area. The
basic idea is that in various settings, functions with small local fluctuations
are often essentially constant, where “essentially” should be interpreted in the
probabilistic sense that with high probability, such functions are close to their
means.

The following result in classical probability gives a first example of a con-
centration phenomenon.

Theorem 5.1 (Bernstein’s inequality) Let {X j}
n
j=1 be independent random

variables such that, for each j, |X j| ≤ 1 almost surely. Let S n :=
∑n

j=1 X j

and let σ2 = Var
(∑n

j=1 X j

)
. Then for all t > 0,

P
[∣∣∣∣∣S n

n
− E

[S n

n

]∣∣∣∣∣ > t
]
≤ C exp

(
−min

{
n2t2

2σ2 ,
nt
2

})
.

Letting t = Aσ2

n for a large constant A gives that

P

[∣∣∣∣∣S n

n
− E

[S n

n

]∣∣∣∣∣ > Aσ2

n

]
≤ Ce−

Aσ2
2 .

That is, if n is large, it is likely that the average of n bounded independent ran-
dom variables is within a window of size O

(
1
n

)
about its mean. It is reasonable

to think of the average of n random variables as a statistic with small local
fluctuations, since if just the value of one (or a few) of the random variables is
changed, the average can only change on the scale of 1

n .

138
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Another classical appearance of concentration of measure is that of Gaussian
measure concentration:

Theorem 5.2 Let f : Rn → R be Lipschitz with Lipschitz constant L, and
let Z = (Z1, . . . ,Zn) be a standard Gaussian random vector in Rn. Let M be a
median of f ; i.e., P[ f (Z) ≥ M] ≥ 1

2 and P[ f (Z) ≤ M] ≥ 1
2 . Then

P
[
| f (Z) − M| ≥ Lt

]
≤ 2e−

t2
2 .

The following statement about uniform measure on the sphere is analogous
to the previous result; the difference in appearance of the exponent is only due
to the choice of normalization of the random vector.

Theorem 5.3 (Lévy’s lemma) Let f : Sn−1 → R be Lipschitz with Lipschitz
constant L, and let X be a uniform random vector in Sn−1. Let M be a median
of f ; that is, P[ f (X) ≥ M] ≥ 1

2 and P[ f (X) ≤ M] ≥ 1
2 . Then

P
[∣∣∣ f (X) − M

∣∣∣ ≥ Lt
]
≤ 2e−(n−2)t2

.

Both results can be loosely interpreted as saying that if the local fluctuations
of a function are controlled (the function is Lipschitz), then the function is
essentially constant.

Concentration results are often formulated in terms of the mean rather than
a median, as follows.

Corollary 5.4 Let f : Sn−1 → R be Lipschitz with Lipschitz constant L, and
let X be a uniform random vector in Sn−1. Then if M f denotes a median of f
with respect to uniform measure on Sn−1,

|E f (X) − M f | ≤ L
√

π

n − 2

and

P[| f (X) − E f (X)| ≥ Lt] ≤ eπ−
nt2
4 .

Proof First note that Lévy’s lemma and Fubini’s theorem imply that∣∣∣E f (X) − M f

∣∣∣ ≤ E∣∣∣ f (X) − M f

∣∣∣
=

∫ ∞

0
P
[∣∣∣ f (X) − M f

∣∣∣ > t
]
dt ≤

∫ ∞

0
2e−

(n−2)t2

L2 dt = L
√

π

n − 2
.
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If t > 2
√

π
n−2 , then

P
[
| f (X) − E f (X)| > Lt

]
≤ P

[∣∣∣ f (X) − M f

∣∣∣ > Lt −
∣∣∣M f − E f (X)

∣∣∣]
≤ P

[∣∣∣ f (X) − M f

∣∣∣ > L
(
t −

√
π

n − 2

)]
≤ 2e−

(n−2)t2
4 .

On the other hand, if t ≤ 2
√

π
n−2 , then

eπ−
(n−2)t2

4 ≥ 1,

so the statement holds trivially. �

5.2 Logarithmic Sobolev inequalities and concentration

Knowing that a metric probability space possesses a concentration of measure
property along the lines of Lévy’s lemma opens many doors; however, it is not
a priori clear how to show that such a property holds or to determine what
the optimal (or even good) constants are. In this section we discuss obtaining
measure concentration via logarithmic Sobolev inequalities.

In what follows let (X, d) be a metric space equipped with a Borel probability
measure P, with E denoting expectation with respect to P. The entropy of a
measurable function f : X → [0,∞) with respect to P is

Ent( f ) := E
[
f log( f )

]
− (E f ) log (E f ) . (5.1)

For c > 0, Ent(c f ) = c Ent( f ), and it follows from Jensen’s inequality that
Ent( f ) ≥ 0.

Since X is an arbitrary metric measure space, it may not have a smooth
structure. Nevertheless, the concept of the length of the gradient extends, as
follows. A function g : X → R is locally Lipschitz if for all x ∈ X, there is
a neighborhood U ⊆ X of x on which g is Lipschitz; for a locally Lipschitz
function g : X → R, the length of the gradient of g at x is defined by

|∇g| (x) := lim sup
y→x

|g(y) − g(x)|
d(y, x)

.

For smooth functions φ : R → R, this length of gradient satisfies the chain
rule:

|∇φ( f )| ≤ |φ′( f )||∇ f |.
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Definition The space (X, d,P) satisfies a logarithmic Sobolev inequality
(or log-Sobolev inequality or LSI) with constant C > 0 if, for every locally
Lipschitz f : X → R,

Ent( f 2) ≤ 2CE
(
|∇ f |2

)
. (5.2)

The reason for our interest in log-Sobolev inequalities is that they imply
measure concentration for Lipschitz functions, via what is known as the Herbst
argument.

Theorem 5.5 Suppose that (X, d,P) satisfies a log-Sobolev inequality with
constant C > 0. Then if F : X → R is 1-Lipschitz, E|F| < ∞, and for every
r ≥ 0,

P
[∣∣∣F − EF

∣∣∣ ≥ r
]
≤ 2e−r2/2C .

Proof (the Herbst argument)
First consider the case that F is bounded as well as Lipschitz, and note also

that by replacing F with F −EF, it suffices to treat the case EF = 0. For λ > 0,
it follows by Chebychev’s inequality that

P [F ≥ r] = P
[
eλF ≥ eλr

]
≤ e−λrEeλF . (5.3)

For notational convenience, let H(λ) := EeλF , and consider the function f with

f 2 := eλF .

Then

Ent( f 2) = E
[
λFeλF

]
− H(λ) log H(λ),

and

|∇ f (x)| ≤ e
λF(x)

2

(
λ

2

)
|∇F(x)|.

Taking expectation and using the fact that F is 1-Lipschitz (so that |∇F| ≤ 1)
gives

E|∇ f |2 ≤
λ2

4
E

[
|∇F|2eλF

]
≤
λ2

4
E

[
eλF

]
=
λ2

4
H(λ);

applying the LSI with constant C to this f thus yields

E
[
λFeλF

]
− H(λ) log H(λ) = λH′(λ) − H(λ) log H(λ) ≤

Cλ2

2
H(λ),

or rearranging,
H′(λ)
λH(λ)

−
log H(λ)

λ2 ≤
C
2
.
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Now, if K(λ) := log H(λ)
λ

, then the right-hand side is just K′(λ), and so we have
the simple differential inequality

K′(λ) ≤
C
2
.

Since H(0) = 1,

lim
λ→0

K(λ) = lim
λ→0

H′(λ)
H(λ)

= lim
λ→0

E
[
FeλF

]
E

[
eλF] = EF = 0,

and thus

K(λ) =

∫ λ

0
K′(s)ds ≤

∫ λ

0

C
2

ds =
Cλ
2
.

In other words,

E
[
eλF

]
= H(λ) = eλK(λ) ≤ e

Cλ2
2 .

It follows from this last estimate together with (5.3) that for F : X → R which
is 1-Lipschitz and bounded,

P [F ≥ EF + r] ≤ e−λr+ Cλ2
2 .

Choosing λ = r
C completes the proof under the assumption that F is bounded.

In the general case, let ε > 0 and define the truncation Fε by

Fε(x) :=


− 1
ε
, F(x) ≤ − 1

ε
;

F(x), − 1
ε
≤ F(x) ≤ 1

ε
;

1
ε
, F(x) ≥ 1

ε
.

Then Fε is 1-Lipschitz and bounded so that by the argument above,

E
[
eλFε

]
≤ eλEFε+

Cλ2
2 .

The truncation Fε approaches F pointwise as ε → 0, so by Fatou’s lemma,

E
[
eλF

]
≤ elim infε→0 λEFεe

Cλ2
2 .

It remains to show that EFε
ε→0
−−−→ EF (in particular that EF is defined); the

proof is then completed exactly as in the bounded case.
Now, F takes on some finite value at each point in X, so there is a constant

K such that

P [|F| ≤ K] ≥
7
8

;
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moreover, Fε converges pointwise, hence also in probability to F, so there is
some εo such that for ε < εo,

P [|Fε − F| > K] <
1
8
,

and so P [|Fε | ≤ 2K] ≥ 3
4 . On the other hand, since |Fε | is bounded and 1-

Lipschitz, it has already been shown that

P
[∣∣∣∣|Fε | − E|Fε |

∣∣∣∣ > t
]
≤ 2e−

t2
2C , (5.4)

so that there is some r (depending only on C) such that

P
[∣∣∣∣|Fε | − E|Fε |

∣∣∣∣ > r
]
≤

1
4
.

It follows that for ε < εo, the set

{|Fε | < 2K} ∩
{∣∣∣∣|Fε | − E|Fε |

∣∣∣∣ ≤ r
}

has probability at least 1
2 , and is in particular non-empty. But on this set,

E|Fε | ≤ 2K + r, and so E|Fε | is uniformly bounded, independent of ε.
It follows from the version of (5.4) for Fε itself and Fubini’s theorem that

E |Fε − EFε |
2 =

∫ ∞

0
tP [|Fε − EFε | > t] dt ≤

∫ ∞

0
2te−

t2
2C dt = 2C,

and using Fatou’s lemma again gives that

E|F − EFε |
2 ≤ lim inf

ε→0
E|Fε − EFε |

2 ≤ 2C.

In particular

E|F| ≤ E|F − EFε | + E|Fε | ≤
√

2C + 2K + r,

and so F is integrable. One final application of the convergence of Fε to F in
probability gives

|EF −EFε | ≤ δ+E|Fε − F|1|Fε−F|>δ ≤ δ+
√
E|Fε − F|2P [|Fε − F| > δ]

ε→0
−−−→ 0.

�

Log-Sobolev inequalities can be transfered between spaces via Lipschitz
maps, as follows.

Lemma 5.6 Let (X, dX ,P) be a metric space equipped with a Borel probabil-
ity measure P and let (Y, dY ) be a metric space. Suppose that (X, dX ,P) satisfies
a log-Sobolev inequality with constant C. Let F : X → Y be a Lipschitz map
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with Lipschitz constant L, and let PF be the push-forward of P to Y via F; i.e,
if A ⊆ Y is a Borel set, then

PF(A) = P(F−1(A)).

Then (Y, dY ,PF) satisfies a log-Sobolev inequality with constant CL2.

Proof Let g : Y → R be locally Lipschitz. Then g ◦ F : X → R is locally
Lipschitz, and at each x ∈ X,

|∇(g ◦ F)|(x) ≤ L|∇g|(F(x)).

Applying the LSI on X to g ◦ F thus yields

EntPF (g) = EntP(g ◦ F)

≤ 2C
∫ ∣∣∣∇g ◦ F

∣∣∣2(x)dP(x)

≤ 2CL2
∫ ∣∣∣∇F

∣∣∣2(F(x))dP(x) = 2CL2
∫ ∣∣∣∇F

∣∣∣2(y)dPF(y).

�

A key advantages of the approach to concentration via log-Sobolev inequal-
ities is that log-Sobolev inequalities tensorize; that is, if one has the same LSI
on each of some finite collection of spaces, the same LSI holds on the product
space, independent of the number of factors, as follows.

Theorem 5.7 Suppose that each of the metric probability spaces (Xi, di, µi)
(1 ≤ i ≤ n) satisifes a log-Sobolev inequality: for each i there is a Ci > 0 such
that for every locally Lipschitz function f : Xi → R,

Entµi ( f 2) ≤ 2Ci

∫
|∇Xi f |2dµi.

Let X = X1 × · · · × Xn equipped with the product probability measure µ :=
µ1 ⊗ · · · ⊗ µn. Then for every locally Lipschitz function f : X → R,

Entµ( f 2) ≤ 2C
∫ n∑

i=1

|∇Xi f |2dµ,

where

|∇Xi f (x1, . . . , xn)| = lim sup
yi→xi

| f (x1, . . . , xi−1, yi, xi+1, . . . , xn) − f (x1, . . . , xn)|
di(yi, xi)

and C = max1≤i≤n Ci.
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The crucial point here is that the constant C does not get worse with the
number of factors; that is, the lemma gives dimension-free tensorization of
log-Sobolev inequalities.

The theorem follows immediately from the following property of entropy.

Proposition 5.8 Let X = X1 × · · · × Xn and µ = µ1 ⊗ · · · ⊗ µn as above, and
suppose that f : X → [0,∞). For {x1, . . . , xn} \ {xi} fixed, write

fi(xi) = f (x1, . . . , xn),

thought of as a function of xi. Then

Entµ( f ) ≤
n∑

i=1

∫
Entµi ( fi)dµ.

Proof The proof makes use of the following dual formulation of the defini-
tion of entropy: given a probability space (Ω,F,P), the definition of Ent( f ) =

EntP( f ) given in Equation (5.1) is equivalent to

EntP( f ) := sup
{∫

f gdP
∣∣∣∣∣ ∫ egdP ≤ 1

}
,

as follows.
First, for simplicity we may assume that

∫
f dP = 1, since both expressions

for the entropy are homogeneous of degree 1. Then the expression in (5.1) is

EntP( f ) =

∫
f log( f )dP.

Now, if g := log( f ), then
∫

egdP =
∫

f dP = 1, and so∫
f log( f )dP =

∫
f gdP ≤ sup

{∫
f gdP

∣∣∣∣∣ ∫ egdP ≤ 1
}
.

On the other hand, Young’s inequality says that for u ≥ 0 and v ∈ R,

uv ≤ u log(u) − u + ev;

applying this to u = f and v = g and integrating shows that

sup
{∫

f gdP
∣∣∣∣∣ ∫ egdP ≤ 1

}
≤

∫
f log( f )dP.

Working now with the alternative definition of entropy, given g such that∫
egdµ ≤ 1, for each i define

gi(x1, . . . , xn) := log


∫

eg(y1,...,yi−1,xi,...,xn)dµ1(y1) · · · dµi−1(yi−1)∫
eg(y1,...,yi,xi+1,...,xn)dµ1(y1) · · · dµi(yi)

 ,
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(note that gi only actually depends on xi, . . . , xn). Then
n∑

i=1

gi(x1, . . . , xn) = log

 eg(x1,...,xn)∫
eg(y1,...,yn)dµ1(y1) · · · dµn(yn)

 ≥ g(x1, . . . , xn),

and by construction,∫
e(gi)i dµi =

∫ 
∫

eg(y1,...,yi−1,xi,...,xn)dµ1(y1) · · · dµi−1(yi−1)∫
eg(y1,...,yi,xi+1,...,xn)dµ1(y1) · · · dµi(yi)

 dµi(xi) = 1.

Applying these two estimates together with Fubini’s theorem yields∫
f gdµ ≤

n∑
i=1

∫
f gidµ =

n∑
i=1

∫ (∫
fi(gi)idµi

)
dµ ≤

n∑
i=1

∫
Entµi ( fi)dµ.

�

In general, tensorizing concentration inequalities results in a loss in the con-
stant which gets worse with the number of factors. This is why concentration
as a consequence of a log-Sobolev inequality is so valuable: product spaces
have the same type of concentration phenomena as their factors, as follows.

Theorem 5.9 Let (X1, d1, µ1), . . . , (Xn, dn, µn) be compact metric probability
spaces. Suppose that for each i, (Xi, di, µi) satisfies a log-Sobolev inequality
with constant Ci. Let X = X1 × · · · × Xn be equipped with the product measure
µ = µ1 ⊗ · · · ⊗ µn and the `2-sum metric

d2((x1, . . . , xn), (y1, . . . , yn)) =

n∑
i=1

d2
i (xi, yi).

If F : X → R is 1-Lipschitz, then for every r ≥ 0,

P
[∣∣∣F − EF

∣∣∣ ≥ r
]
≤ 2e−r2/4C ,

where C = max1≤i≤n Ci.

Proof The main point is to connect the Lipschitz condition on F to the quan-
tity

n∑
i=1

∣∣∣∇Xi F
∣∣∣2

appearing in Theorem 5.7; the rest of the proof is a repeat of the Herbst argu-
ment.

Given F : X → R 1-Lipschitz, for each ε > 0 define the function

Fε(x) = inf
z∈X

[
F(z) +

√
ε2 + d2(x, z)

]
.
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Then for all x ∈ X,

F(x) ≤ Fε(x) ≤ F(x) + ε

(the first inequality is because F is 1-Lipschitz and the second is by choosing
z = x in the infimum).

Fix x = (x1, . . . , xn) ∈ X. Since X is compact, there is an a ∈ X such that
Fε(x) = F(z) +

√
ε2 + d2(x, a). Now let yi ∈ Xi, and let

x(i,yi) = (x1, . . . , xi−1, yi, xi+1, . . . , xn).

Then

Fε(x(i,yi)) − Fε(x) ≤
√
ε2 + d2(x(i,yi), a) −

√
ε2 + d2(x, a)

=
d2

i (yi, ai) − d2
i (xi, ai)√

ε2 + d2(x(i,yi), a) +
√
ε2 + d2(x, a)

≤
di(xi, yi)

[
di(ai, yi) + di(xi, ai)

]√
ε2 + d2(x(i,yi), a) +

√
ε2 + d2(x, a)

,

by repeated applications of the triangle inequality. It follows that

lim sup
yi→xi

Fε(x(i,yi)) − Fε(x)
di(xi, yi)

≤
di(xi, ai)√
ε2 + d2(x, a)

,

and so if
∣∣∣∇+

Xi
Fε

∣∣∣ (x) = lim supyi→xi

[Fε (x(i,yi ))−Fε (x)]+

di(xi,yi)
, then

∑n
i=1

∣∣∣∇+
Xi

Fε

∣∣∣2 (x) ≤ 1.

Applying the same argument to −Fε then gives that
∑n

i=1

∣∣∣∇Xi Fε

∣∣∣2 (x) ≤ 2.
At this point, one can apply the Herbst argument to Fε , using the result of

Theorem 5.7 and everywhere replacing |∇Fε |
2 (x) with

∑n
i=1

∣∣∣∇Xi Fε

∣∣∣2 (x). From
this it follows that

P
[∣∣∣Fε − EFε

∣∣∣ ≥ r
]
≤ 2e−r2/4C,

with C = max1≤i≤n Ci. The result now follows from the monotone convergence
theorem, letting ε → 0.

�

5.3 The Bakry–Émery criterion and concentration for the
classical compact groups

All of the classical compact matrix groups satisfy a concentration of measure
property similar to the one on the sphere given in Lévy’s lemma. In almost
every case, the optimal (i.e., with smallest constants) log-Sobolev inequalities
follow from the Bakry-Émery curvature criterion. We begin with some back-
ground in Riemannian geometry.
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Riemannian Geometry and Lie groups

Let M be a smooth manifold embedded in Euclidean space. A tangent vector
at a point p ∈ M can be realized as the tangent vector γ′(0) to some curve
γ : (−ε, ε)→ M with γ(0) = p:

γ′(0) = lim
s→0

γ(s) − p
s

,

where the operations are taking place in the ambient Euclidean space. On an
abstract manifold, tangent vectors to a point are defined similarly as equiva-
lence classes of curves through that point, but we will not need this in what
follows. The set of tangent vectors to M at a point p is denoted TpM and the
set of all tangent vectors to M is denoted T M.

The manifolds we are working with all have the additional structure of a
Riemannian metric. A Riemannian manifold (M, g) is a smooth manifold to-
gether with a Riemannian metric g; i.e., a family of inner products: at each
point p ∈ M, gp : TpM × TpM → R defines an inner product on the tangent
space TpM to M at p. A manifold embedded in Euclidean space inherits a met-
ric just by restricting the ambient Euclidean metric. Different embeddings can
give rise to different metrics but for the classical groups we will stick with the
canonical embedding and resulting metric.

Given a smooth function f : M → N between manifolds, the differential
or push-forward of f at p ∈ M is the map ( f∗)p : TpM → T f (p)N which
is defined as follows. Given a curve γ : (−ε, ε) → M with γ(0) = p and
γ′(0) = X,

( f∗)p(X) =
d
dt

f (γ(t))
∣∣∣∣∣
t=0
.

The definition of f∗ is independent of γ.
A vector field X on M is a smooth (infinitely differentiable) map X : M →

T M such that for each p ∈ M, X(p) ∈ TpM. Note that the push-forward f∗ can
then be used to define a vector field f∗X on N. From a different perspective, the
definition of f∗ can be turned around to give a way that a smooth vector field
X on M acts as a differential operator: given a vector field X, for any smooth
function f on M, the function X( f ) is defined by the requirement that for any
curve γ : (−ε, ε)→ M with γ(0) = p and γ′(0) = X(p),

X( f )(p) =
d
dt

f (γ(t))
∣∣∣∣∣
t=0

;

that is, X( f )(p) = ( f∗)p(X).
It is sometimes convenient to work in coordinates. A local frame {Li} is a

collection of vector fields defined on an open set U ⊆ M such that at each
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point p ∈ U, the vectors {Li(p)} ⊆ TpM form a basis of TpM. The vector
fields {Li} are called a local orthonormal frame if at each point in U, the {Li}

are orthonormal with repect to g. Some manifolds only have local frames, not
global ones; that is, you can’t define a smooth family of vector fields over the
whole manifold which forms a basis of the tangent space at each point. This is
true, for example of S2 ⊆ R3. However, every compact Lie group has a global
orthonormal frame (this follows from the comment after Equation (5.5) below.)

The definitions above have been formulated for general embedded mani-
folds, but in the setting of Lie groups, one can normally restrict attention to
what happens at the identity e ∈ G, and get the rest via translation within the
group. Specifically, any vector X ∈ Te(G) defines a vector field X̃ on G as fol-
lows. For g ∈ G fixed, let Lg : G → G denote the map given by Lg(h) = gh.
Then for any h ∈ G, define

X̃(h) := (Lh∗)eX =
d
dt

[hγ(t)]
∣∣∣∣∣
t=0
,

for any curve γ in G with γ(0) = e and γ′(0) = X. The vector field X̃ acts as a
differential operator by

X̃( f )(h) =
d
dt

f (hγ(t))
∣∣∣∣∣
t=0
,

since γh(t) = hγ(t) is a curve with γh(0) = h and

γ′h(0) =
d
dt

[hγ(t)]
∣∣∣∣∣
t=0

= X̃(h).

A vector field Y on G with the property that for any g ∈ G, Lg∗Y = Y is called
a (left) invariant vector field. For any X ∈ Te(G), the extension X̃ described
above gives an invariant vector field on G, since

[Lg∗X̃](gh) = (Lg∗)h(X̃(h)) = (Lg∗)h((Lh∗)eX) = (Lgh∗)eX.

Conversely, given an invariant vector field Y , Y(h) = (Lh∗)e(Y(e)) = Ỹ(e)(h),
and so the mapping X 7→ X̃ gives a bijection between invariant vector fields
and elements of Te(G); either of these vector spaces may be referred to as the
Lie algebra of G.

From an intrinsic differential geometric point of view, this is a fine definition
of X̃, but because our Riemannian metric is the one inherited from the ambient
Euclidean space, it helps to also have a more concrete perspective on X̃. As
above, let γ : (−ε, ε)→ G be a curve with γ(0) = e and γ′(0) = X, and for each
h ∈ G, define γh by γh(t) = hγ(t). Then using the Euclidean structure gives that

X̃(h) = γ′h(0) = lim
s→0

γh(s) − h
s

= h
(
lim
s→0

γ(s) − e
s

)
= hγ′(0) = hX.
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In particular, this means that if G is one of the classical compact groups so
that the inner product on TI(G) is the real part of the Hilbert–Schmidt inner
product, then for any h ∈ G and any X̃ and Ỹ defined as above,

gh(X̃(h), Ỹ(h)) = Re(Tr(hXY∗h∗)) = Re(Tr(XY∗)) = 〈X,Y〉 . (5.5)

In particular, if X and Y are orthogonal elements of TI(G), then X̃ and Ỹ are
orthogonal at every point of G.

Given two vector fields X and Y on M, there is a unique vector field [X,Y],
called the Lie Bracket of X and Y , such that

[X,Y]( f ) = X(Y( f )) − Y(X( f )).

The fact that this is a vector field is not obvious, and is in fact a bit surprising,
since vector fields can be thought of as first order differential operators, but
this looks like a second-order operator. Indeed, just XY and YX by themselves
are not vector fields, but in the case of the Lie bracket, the second-order parts
cancel out.

Exercise 5.10 Show that for F : M → N a smooth map between manifolds
and X and Y vector fields on M,

[F∗X, F∗Y] = F∗[X,Y].

It follows in particular from the exercise that on a Lie group G, if X,Y are
invariant vector fields, then so is [X,Y]. Since for given X,Y ∈ Te(G), X̃ and Ỹ
are invariant, this means that there must be some vector Z ∈ Te(G) such that
Z̃ = [X̃, Ỹ]. The identity of this vector Z is given in the following lemma.

Lemma 5.11 Let G be one of the classical compact groups and g = Te(G) its
Lie algebra. Let X,Y ∈ g, and define

[X,Y] = XY − YX,

where here XY refers to the matrix product of X and Y. Then [X,Y] ∈ g and

[̃X,Y] = [X̃, Ỹ],

where the expression on the right is the Lie bracket of the vector fields X̃ and
Ỹ as defined above.

Proof We will verify that [X,Y] ∈ g in the case of G = SU (n); the remaining
cases are essentially the same. Recall that

su(n) = {X ∈ Mn(C) : X + X∗ = 0,Tr(X) = 0} .
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Given X,Y ∈ su(n),

[X,Y] + [X,Y]∗ = XY − YX + Y∗X∗ − X∗Y∗

= XY − YX + YX − XY = 0,

and

Tr([X,Y]) = Tr(XY − YX) = 0.

To verify the claim that [̃X,Y] = [X̃, Ỹ], fix a smooth function f on G and an
element g ∈ G. Then f (g(I + Z)) is a smooth function of Z, and so by Taylor’s
theorem, we can write

f (g(I + Z)) = c0 + c1(Z) + B(Z,Z) + R(Z),

where c1 is a linear function, B is a symmetric bilinear form, |R(X)| ≤ c3‖X‖3H.S .
for some c3 > 0, and c0, c1, B, and R all depend only on f and g. Expanding
the exponential gives that

f (g exp(Z)) = c0 + c1(Z) + B̃(Z,Z) + R̃(Z),

for another symmetric bilinear B̃ and R̃ which vanishes to third order. Then for
Z ∈ TI(G),

Z̃( f )(g) =
d
dt

f (g exp(tZ))
∣∣∣∣∣
t=0

=
d
dt

(
c0 + c1(tZ) + B̃(tZ, tZ) + R̃(tZ)

)∣∣∣∣∣
t=0

= c1(Z).

Now,

X̃(Ỹ( f ))(g) =
d
dt

Ỹ( f )(g exp(tX))
∣∣∣∣∣
t=0

=
d
dt

d
ds

f (g exp(tX) exp(sY))
∣∣∣∣∣
s=0

∣∣∣∣∣
t=0

=
d
dt

d
ds

f (g(I + tX + r(tX))(I + sY + r(sY))
∣∣∣∣∣
s=0

∣∣∣∣∣
t=0
,

where ‖r(Z)‖H.S . ≤ c2‖Z‖2H.S . for some c2 > 0 and Z ∈ G. Proceeding as before,
and writing only the terms of the expansion that give some contribution in the
limit,

X̃(Ỹ( f ))(g) =
d
dt

d
ds

(c0 + c1(tX + sY + stXY) + B(tX + sY, tX + sY))
∣∣∣∣∣
s=0

∣∣∣∣∣
t=0

= c1(XY) + 2B(X,Y).

It follows that

[X̃, Ỹ]( f )(g) = c1(XY − YX) = [̃X,Y]( f )(g),
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which proves the claim. �

We still need a few more notions in order to get to curvature. Firstly, a con-
nection ∇ on M is a way of differentiating one vector field in the direction of
another: a connection ∇ is a bilinear form on vector fields that assigns to vec-
tor fields X and Y a new vector field ∇XY , such that for any smooth function
f : M → R,

∇ f XY = f∇XY and ∇X( f Y) = f∇X(Y) + X( f )Y.

A connection is called torsion-free if

∇XY − ∇Y X = [X,Y]. (5.6)

There is a special connection on a Riemannian manifold, called the Levi-
Civita connection, which is the unique torsion-free connection with the prop-
erty that

X(g(Y,Z)) = g(∇XY,Z) + g(Y,∇XZ). (5.7)

This property may look not obviously interesting, but geometrically, it is a
compatibility condition of the connection ∇ with g. There is a notion of trans-
porting a vector field in a “parallel way” along a curve, which is defined by
the connection. The condition above means that the inner product defined by g
of two vector fields at a point is unchanged if you parallel-transport the vector
fields (using ∇ to define “parallel”) along any curve.

Finally, we can define the Riemannian curvature tensor R(X,Y): to each
pair of vector fields X and Y on M, we associate an operator R(X,Y) on vector
fields defined by

R(X,Y)(Z) := ∇X(∇YZ) − ∇Y (∇XZ) − ∇[X,Y]Z.

The Ricci curvature tensor is the function Ric(X,Y) on M which, at each
point p ∈ M, is the trace of the linear map on TpM defined by Z 7→ R(Z,Y)(X).
In orthonormal local coordinates {Li},

Ric(X,Y) =
∑

i

g(R(X, Li)Li,Y).

(Seeing that this coordinate expression is right involves using some of the sym-
metries of R.)

The Bakry–Émery criterion

The Bakry-Émery criterion can be made more general, but for our purposes it
suffices to formulate it as follows.
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Theorem 5.12 (The Bakry–Émery curvature criterion) Let (M, g) be a com-
pact, connected, m-dimensional Riemannian manifold with normalized volume
measure µ. Suppose that there is a constant c > 0 such that for each p ∈ M
and each v ∈ TpM,

Ricp(v, v) ≥
1
c

gp(v, v).

Then µ satisfies a log-Sobolev inequality with constant c.

The following proposition together with the Bakry–Émery criterion leads to
log-Sobolev inequalities, and thus concentration of measure, on most of the
classical compact groups.

Proposition 5.13 If Gn is one of SO (n), SO− (n) SU (n), or Sp (2n), then for
each U ∈ Gn and each X ∈ TUGn,

RicU(X, X) = cGn gU(X, X),

where gU is the Hilbert–Schmidt metric and cGn is given by

G cG

SO (n), SO− (n) n−2
4

SU (n) n
2

Sp (2n) n + 1

For the curvature computation, it is simplest to work with the symplectic
group in its quaternionic form, with the Lie algebra

suH(n) = {X ∈ Mn(H) : X + X∗ = 0} ,

where

H = {a + bi + cj + dk : a, b, c, d ∈ R}

is the skew field of quaternions, (a + bi + cj + dk) = a − bi − cj − dk, and the
(real) inner product on suH(n) is given by 〈X,Y〉 = Tr(XY∗).

The following proposition is a key part of the proof of Proposition 5.13.

Proposition 5.14 Let X ∈ g, where g is one of so(n), su(n), or suH(n), and let
{Lα}α∈A be an orthonormal basis of g. Then

−
1
4

∑
α∈A

[[X, Lα], Lα] =

(
β(n + 2)

4
− 1

)
X,
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where β = 1, 2, 4 as g is so(n), su(n), or suH(n).

Proof We first observe that the expression on the left is independent of the
choice of orthonormal basis. Indeed, each g is a real inner product space (with
the inner product given by 〈X,Y〉 = Re(Tr(XY∗))). If {Kα}α∈A is a second or-
thonormal basis of g, then there is an orthogonal matrix U = [uα,β]α,β∈A such
that

Kβ =
∑
α

uα,βLα.

Then∑
β∈A

[[X,Kβ],Kβ] =
∑
β∈A

∑
α1,α2∈A

uα1,βuα2,β[[X, Lα1 ], Lα2 ] =
∑
α∈A

[[X, Lα], Lα]

by the orthogonality of the matrix U.
Note that so(1) = su(1) = {0}. It is easy to check the claim for suH(1) with

the basis {i, j,k}, so in what follows, we will assume n ≥ 2.
If 1 ≤ j, k ≤ n, we use E jk to denote the matrix with 1 in the j-k entry and

zeros otherwise. For q ∈ {i, j,k} and 1 ≤ ` < n, define

Dq
`

:=
q

√
` + `2

∑̀
r=1

Err − `E`+1,`+1


and let Dq

n := q
√

n In. Define D` := Di
`.

For q ∈ {1, i, j,k} and 1 ≤ ` < r ≤ n, define

Fq
`r :=

q
√

2
E`,r −

q
√

2
Er,`.

Let F`r := F1
`r and let G`r = F i

`r. Then

• {F`r : 1 ≤ ` < r ≤ n} is an orthonormal basis of so(n);

• {D` : 1 ≤ ` < n}∪{F`r,G`r : 1 ≤ ` < r ≤ n} is an orthonormal basis of su(n);

•
{
Dq
`

: 1 ≤ ` ≤ n, q ∈ {i, j,k}
}
∪

{
Fq
`r : 1 ≤ ` < r ≤ n, q ∈ {1, i, j,k}

}
is an or-

thonormal basis of suH(n).

It suffices to verify the claim for these orthonormal bases {Lα}α∈A. We can
make a further simplification as follows: suppose that the claimed formula
holds for a particular orthonormal basis {Lα}α∈A and a particular choice of X.
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Let U ∈ G. Then(
β(n + 2)

4
− 1

)
UXU∗ = −

1
4

∑
α∈A

U[X, Lα], Lα]U∗

= −
1
4

∑
α∈A

[[UXU∗,ULαU∗],ULαU∗].

It is easy to check that {ULαU∗}α∈A is again an orthonormal basis of g, and so
we have that if the claimed formula holds for X, then it holds for UXU∗.

Take X = F12. We will show that the collection {UXU∗ : U ∈ G} spans g, so
that it finally suffices to verify the claimed formula for the orthonormal bases
listed above and the single element X = F12.

All of the F`r are of the form UXU∗ for a permutation matrix U. Choosing

U =
1
√

n

[
1 + q 0

0 1 − q

]
⊕ In−2

for q ∈ {i, j,k} gives

UXU∗ =
1
n

Fq
12,

and further conjugation by permutation matrices yields (multiples of) all the
F1
`r. Choosing

U =
1

√
n + 2

[
q 1
1 q

]
⊕ In−2

for q ∈ {i, j,k} gives

UXU∗ =

(
2

n + 2

)
Dq

1;

further conjugation by permutation matrices yields all matrices with one 1 and
one −1 on the diagonal. By taking linear combinations, this yields all of the Dq

`

for 1 ≤ ` < n. Finally, note that[
1 0
0 j

] [
i 0
0 −i

] [
1 0
0 −j

]
=

[
i 0
0 i

]
;

taking U =

[
1 0
0 j

]
⊕ In−2, and then taking linear combinations of conjuga-

tions of UXU∗ by permutation matrices results in a (real) multiple of Di
n; the

remaining Dq
n can be obtained similarly.

All that remains is to finally verify the formula for X = F12. Now, F12

commutes with all the Dq
`

with ` > 1 and all the Fq
`r with 2 < ` < r ≤ n. For

q ∈ {i, j,k},
[[F12, F

q
12], Fq

12] = [[F12,D
q
1],Dq

1] = −2F12.
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If 1 ≤ ` ≤ 2 < r ≤ n, then

[[F12, F
q
`r], F

q
`r] = −

1
2

F12.

From this it is clear that
∑
α[[X, Lα], Lα] is some multiple of X; collecting terms

yields exactly the claimed constant.
�

We now give the proof of Proposition 5.13.

Proof of Proposition 5.13 First we observe that the defining properties (5.6)
and (5.7) of the Levi-Civita connection imply that for all vector fields X,Y,Z,

2g(∇XY,Z) = X(g(Y,Z)) + Y(g(Z, X)) − Z(g(X,Y))

+ g([X,Y],Z) + g([Z, X],Y) + g(X, [Z,Y]).

In particular, since g(X̃, Ỹ) is constant for any vectors X,Y ∈ TI(G), it follows
that

2g(∇X̃Ỹ , Z̃) = g([X̃, Ỹ], Z̃) + g([Z̃, X̃], Ỹ) + g(X̃, [Z̃, Ỹ])

= 〈[X,Y],Z〉 + 〈[Z, X],Y〉 + 〈X, [Z,Y]〉

for all X,Y,Z ∈ TI(G). Using the fact that X,Y,Z ∈ TI(G) so that, e.g., X∗ = −X
leads to the further simplification

2g(∇X̃Ỹ , Z̃) = 〈[X,Y],Z〉 = g([X̃, Ỹ], Z̃).

Taking Z = Lα for {Lα}α∈A an orthonormal basis of TI(G) and summing over α
gives that

∇X̃Ỹ =
1
2

[̃X,Y].

Then

R(X̃, L̃α)L̃α = ∇X̃(∇L̃α L̃α) − ∇L̃α (∇X̃ L̃α) − ∇[X̃,L̃α]L̃α

= −
1
4

[[X, Lα], Lα].

The coordinate expression for the Ricci curvature together with Proposition
5.14 now gives that

Ric(X̃, X̃) = −
1
4

∑
α∈A

〈[[X, Lα], Xα], X〉

=

(
β(n + 2)

4
− 1

)
〈X, X〉 =

(
β(n + 2)

4
− 1

)
g(X̃, X̃).

�
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Log-Sobolev inequalities, and hence concentration inequalities, now follow
immediately from the Bakry–Émery Theorem for the groups listed above; i.e.,
all of the classical compact groups except O (n) and U (n). On O (n), we can-
not expect more and indeed more is not true, because O (n) is disconnected.
We do have the best that can be hoped for, namely concentration on each of
the pieces. In the case of U (n), though, there is the same kind of concentra-
tion that we have on SU (n). There is no non-zero lower bound on the Ricci
curvature on U (n): Ric(X̃, X̃) = 0 when X = iI ∈ TI(U (n)). Instead, one can
obtain a log-Sobolev inequality on U (n) from the one on SU (n) via a coupling
argument. The following slightly non-standard coupling of the Haar measures
on SU (n) and U (n) is the key to obtaining the right dimensional dependence
in the constant.

Lemma 5.15 Let θ be uniformly distributed in
[
0, 2π

n

]
and let V ∈ SU (n)

be uniformly distributed, with θ and V independent. Then eiθV is uniformly
distributed in U (n).

Proof Let X be uniformly distributed in [0, 1), K uniformly distributed in
{0, . . . , n−1}, and V uniformly distributed in SU (n) with (X,K,V) independent.
Consider

U = e2πiX/ne2πiK/nV.

On one hand, it is easy to see that (X + K) is uniformly distributed in [0, n],
so that e2πi(X+K)/n is uniformly distributed on S1. Thus U d

= ωV for ω uniform
in S1 and independent of V . It is clear that the distribution of ωV is translation-
invariant on U (n), so that U is Haar-distributed.

On the other hand, if In is the n×n identity matrix, then e2πiK/nIn ∈ SU (n). By
the translation invariance of Haar measure on SU (n) this implies that e2πiK/nV d

=

V , and so e2πiX/nV d
= U. �

The log-Sobolev inequality on U (n) now follows using this coupling to-
gether with the tensorization property of LSI, as follows.

Proof of LSI on U (n) First, for the interval [0, 2π] equipped with its standard
metric and uniform measure, the optimal constant in (5.2) for functions f with
f (0) = f (2π) is known to be 1, see e.g. [106]. This fact completes the proof in
the case n = 1; from now on, assume that n ≥ 2.

Suppose that f : [0, π] → R is locally Lipschitz, and define a function
f̃ : [0, 2π]→ R by reflection:

f̃ (x) :=

 f (x), 0 ≤ x ≤ π;

f (2π − x), π ≤ x ≤ 2π.
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Then f̃ is locally Lipschitz and f̃ (2π) = f̃ (0), so f̃ satisfies a LSI for uni-
form measure on [0, 2π] with constant 1. If µ[a,b] denotes uniform (probability)
measure on [a, b], then

Entµ[0,2π] ( f̃ 2) = Entµ[0,π] ( f 2),

and

1
2π

∫ 2π

0
|∇ f̃ (x)|2dx =

1
π

∫ π

0
|∇ f (x)|2dx,

so f itself satisfies a LSI for uniform measure on [0, π] with constant 1 as well.
It then follows by a scaling argument that the optimal logarithmic Sobolev

constant on
[
0, π

√
2

√
n

)
is 2/n (for g :

[
0, π

√
2

√
n

)
→ R, apply the LSI to g

(√
2
n x

)
and rearrange it to get the LSI on

[
0, π

√
2

√
n

)
.)

Combining Proposition 5.13 with the Bakry–Émery criterion shows that
SU (n) satisfies a log-Sobolev inequality with constant 2/n when equipped with
its geodesic distance, and hence also when equipped with the Hilbert–Schmidt
metric. By the tensorization property of log-Sobolev inequalities in product

spaces (Lemma 5.7), the product space
[
0, π

√
2

√
n

)
× SU (n), equipped with the

L2-sum metric, satisfies a log-Sobolev inequality with constant 2/n as well.

Define the map F :
[
0, π

√
2

√
n

)
× SU (n) → U (n) by F(t,V) = e

√
2it/
√

nV . By
Lemma 5.15, the push-forward via F of the product of uniform measure on[
0, π

√
2

√
n

)
with uniform measure on SU (n) is uniform measure on U (n). More-

over, this map is
√

3-Lipschitz:∥∥∥∥e
√

2it1/
√

nV1 − e
√

2it2/
√

nV2

∥∥∥∥
HS
≤

∥∥∥∥e
√

2it1/
√

nV1 − e
√

2it1/
√

nV2

∥∥∥∥
HS

+
∥∥∥∥e
√

2it1/
√

nV2 − e
√

2it2/
√

nV2

∥∥∥∥
HS

= ‖V1 − V2‖HS +
∥∥∥∥e
√

2it1/
√

nIn − e
√

2it2/
√

nIn

∥∥∥∥
HS

≤ ‖V1 − V2‖HS +
√

2 |t1 − t2|

≤
√

3
√
‖V1 − V2‖

2
HS + |t1 − t2|2.

It now follows from Lemma 5.6 that Haar measure on U (n) satisfies a loga-
rithmic Sobolev inequality with constant (

√
3)2 2

n = 6
n . �

Summarizing, we have the following.

Theorem 5.16 The matrix groups and cosets SO (n), SO− (n), SU (n), U (n),
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and Sp (2n) with Haar probability measure and the Hilbert–Schmidt metric,
satisfy logarithmic Sobolev inequalities with the following constants:

G CG

SO (n), SO− (n) 4
n−2

SU (n) 2
n

U (n) 6
n

Sp (2n) 1
n+1

Recall from Lemma 1.3 that the the geodesic distance on U (n) is bounded
above by π/2 times the Hilbert–Schmidt distance. Thus Theorem 5.16 implies,
for example that U (n) equipped with the geodesic distance also satisfies a log-
Sobolev inequality, with constant 3π2/2n.

The following summarizes the concentration properties of Haar measure
on the classical compact groups which follow from the log-Sobolev constants
above together with Theorem 5.9.

Theorem 5.17 Given n1, . . . , nk ∈ N, let X = Gn1 × · · · ×Gnk , where for each
of the ni, Gni is one of SO (ni), SO− (ni), SU (ni), U (ni), or Sp (2ni). Let X be
equipped with the L2-sum of Hilbert–Schmidt metrics on the Gni . Suppose that
F : X → R is L-Lipschitz, and that {U j ∈ Gn j : 1 ≤ j ≤ k} are independent,
Haar-distributed random matrices. Then for each t > 0,

P
[
F(U1, . . . ,Uk) ≥ EF(U1, . . . ,Uk) + t

]
≤ e−(n−2)t2/24L2

,

where n = min{n1, . . . , nk}.

5.4 Concentration of the spectral measure

The following theorem quantifies the rate of convergence of the empirical spec-
tral measure of a random unitary matrix to the uniform measure on the circle,
and more generally, the empirical spectral measure of a power of a random
unitary matrix. Recall that Wp denotes the Lp Kantorovich distance between
measures (see Section 2.1).

Theorem 5.18 Let µn,m be the spectral measure of Um, where 1 ≤ m ≤ n
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and U ∈ U (n) is distributed according to Haar measure, and let ν denote the
uniform measure on S1. Then for each p ≥ 1,

EWp(µn,m, ν) ≤ Cp

√
m

[
log

(
n
m

)
+ 1

]
n

,

where C > 0 is an absolute constant.
For each t > 0,

P

Wp(µn,m, ν) ≥ C

√
m

[
log

(
n
m

)
+ 1

]
n

+ t

 ≤ exp
[
−

n2t2

24m

]
for 1 ≤ p ≤ 2 and

P

Wp(µn,m, ν) ≥ Cp

√
m

[
log

(
n
m

)
+ 1

]
n

+ t

 ≤ exp
[
−

n1+2/pt2

24m

]
for p > 2, where C > 0 is an absolute constant.

The change in behavior observed above at p = 2 is typical for the Kan-
torovich distances.

By a simple application of the Borel-Cantelli lemma, one gets an almost
sure rate of convergence, as follows.

Corollary 5.19 Suppose that for each n, Un ∈ U (n) is Haar-distributed and
1 ≤ mn ≤ n. Let ν denote the uniform measure on S1. There is an absolute
constant C such that given p ≥ 1, with probability 1, for all sufficiently large
n,

Wp(µn,mn , ν) ≤ C

√
mn log(n)

n
if 1 ≤ p ≤ 2 and

Wp(µn,mn , ν) ≤ Cp

√
mn log(n)

n
1
2 + 1

p

if p > 2.

Observe in particular the change in behavior of the bound as m grows: for
m = 1,

Wp(µn, ν) ≤
C

√
log(n)
n

.

Since µn is supported on n points, this estimate means that the eigenvalues are
very regularly spaced; Wp(µn, ν) is only logarithmically larger than the distance
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from ν to a discrete measure on n points exactly evenly spaced around the circle
(which is exactly π

n ).
At the opposite extreme, when m = n the bound becomes

Wp(µn,n, ν) ≤
C
√

n
.

This result is in fact classical (and known to be sharp), since by Theorem 3.14,
µn,n is exactly the empirical measure of n i.i.d. uniform random points on the
circle. One would thus expect the eigenvalues of Un to be considerably less
regular than those of U, and indeed this and the intermediate phenomena can
be observed in the simulation shown in Figure 5.1.

The first step in proving Theorem 5.18 is to prove a concentration inequality
for the number N(m)

θ of eigenangles of Um in [0, θ). Such a concentration re-
sult is an easy consequence of Theorems 4.1 and 3.14. Specifically, recall that
since the eigenangles of a random unitary matrix are a determinantal projection
process, it follows from Theorem 4.1 that

N
(1)
θ

d
=

n∑
k=1

ξk,

where the ξk are independent Bernoulli random variables. Moreover, by Theo-
rem 3.14, N(m)

θ is equal in distribution to the total number of eigenvalue angles
in [0, θ) of each of U0 . . . ,Um−1, where U0, . . . ,Um−1 are independent and U j

is Haar-distributed in U
(⌈

n− j
m

⌉)
; that is,

N
(m)
θ

d
=

m−1∑
j=0

N j,θ, (5.8)

where the N j,θ are the independent counting functions corresponding to U0, . . . ,Um−1.
It is therefore also true that N(m)

θ is distributed exactly as a sum of n indepen-
dent Bernoulli random variables.

Generalizing Theorem 4.11 and its proof, it follows from Bernstein’s in-
equality (Theorem 5.1) to get that, for each t > 0,

P
[∣∣∣N(m)

θ − EN
(m)
θ

∣∣∣ > t
]
≤ 2 exp

(
−min

{
t2

4σ2 ,
t
2

})
, (5.9)

where σ2 = VarN(m)
θ .

Estimates for EN(m)
θ and σ2 follow easily from the m = 1 case. Recall from

Propositions 4.7 and 4.8 that
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Figure 5.1 The eigenvalues of Um for U an 80 × 80 random unitary matrix.
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EN(1)
θ =

nθ
2π

and VarN(1)
θ ≤ log(n) + 1.

Proposition 5.20 Let U be uniform in U (n) and 1 ≤ m ≤ n. For θ ∈ [0, 2π),
let N(m)

θ be the number of eigenvalue angles of Um in [0, θ). Then

EN(m)
θ =

nθ
2π

and VarN(m)
θ ≤ m

(
log

( n
m

)
+ 1

)
.

Proof This follows immediately from the representation of N(m)
θ in equation

(5.8); note that the n/m in the variance bound, as opposed to the more obvious
dn/me, follows from the concavity of the logarithm. �

Putting these estimates together with Equation (5.9) gives that for all t > 0,

P
[∣∣∣∣∣N(m)

θ −
nθ
2π

∣∣∣∣∣ > t
]
≤ 2 exp

−min

 t2

4m
(
log

(
n
m

)
+ 1

) , t
2


 . (5.10)

This inequality gives a new route to eigenvalue rigidity: the individual eigen-
values tend to be very close to their predicted locations because of the concen-
tration of the counting function. Rigidity of specific eigenvalues can be explic-
itly quantified as follows.

Lemma 5.21 Let 1 ≤ m ≤ n and let U ∈ U (n) be uniformly distributed.
Denote by eiθ j , 1 ≤ j ≤ n, the eigenvalues of Um, ordered so that 0 ≤ θ1 ≤

· · · ≤ θn < 2π. Then for each j and u > 0,

P

[∣∣∣∣∣θ j −
2π j
n

∣∣∣∣∣ > 4π
n

u
]
≤ 4 exp

−min

 u2

m
(
log

(
n
m

)
+ 1

) , u

 . (5.11)

Proof For each 1 ≤ j ≤ n and u > 0, if j + 2u < n then

P

[
θ j >

2π j
n

+
4π
n

u
]

= P
[
N

(m)
2π( j+2u)

n

< j
]

= P
[

j + 2u −N(m)
2π( j+2u)

n

> 2u
]

≤ P
[∣∣∣∣∣N(m)

2π( j+2u)
n

− EN(m)
2π( j+2u)

n

∣∣∣∣∣ > 2u
]
.

If j + 2u ≥ n then

P

[
θ j >

2π j
n

+
4π
n

u
]

= P
[
θ j > 2π

]
= 0,

and the above inequality holds trivially. The probability that θ j <
2π j
n −

4π
n u is

bounded in the same way. Inequality (5.11) now follows from (5.10). �
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We are now in a position to bound the expected distance between the empir-
ical spectral measure of Um and uniform measure. Let θ j be as in Lemma 5.21.
Then by Fubini’s theorem,

E

∣∣∣∣∣θ j −
2π j
n

∣∣∣∣∣p =

∫ ∞

0
ptp−1P

[∣∣∣∣∣θ j −
2π j
n

∣∣∣∣∣ > t
]

dt

=
(4π)p p

np

∫ ∞

0
up−1P

[∣∣∣∣∣θ j −
2π j
n

∣∣∣∣∣ > 4π
n

u
]

du

≤
4(4π)p p

np

[∫ ∞

0
up−1e−u2/m[log(n/m)+1] du +

∫ ∞

0
up−1e−u du

]
=

4(4π)p

np

[(
m

[
log

( n
m

)
+ 1

])p/2
Γ

( p
2

+ 1
)

+ Γ(p + 1)
]

≤ 8Γ(p + 1)
4π

n

√
m

[
log

( n
m

)
+ 1

]p

.

Let νn be the measure which puts mass 1
n at each of the points e2πi j/n, 1 ≤ j ≤ n.

Then

EWp(µn,m, νn)p ≤ E

1
n

n∑
j=1

∣∣∣eiθ j − e2πi j/n
∣∣∣p

≤ E

1
n

n∑
j=1

∣∣∣∣∣θ j −
2π j
n

∣∣∣∣∣p


≤ 8Γ(p + 1)
4π

n

√
m

[
log

( n
m

)
+ 1

]p

≤ Cpp+ 1
2 e−p

4π
n

√
m

[
log

( n
m

)
+ 1

]p

,

by Stirling’s formula. It is easy to check that Wp(νn, ν) ≤ π
n , and thus

EWp(µn,m, ν) ≤ EWp(µn,m, νn) +
π

n

≤
(
EWp(µn,m, νn)p

) 1
p

+
π

n
≤

Cp
√

m
[
log

(
n
m

)
+ 1

]
n

.

(5.12)

The rest of the main theorem, namely the concentration of Wp(µn,m, ν) at its
mean, is a consequence of the concentration of measure phenomenon on the
unitary group; the crucial point is that Wp(µn,m, ν) is a Lipschitz function of U.
The following lemma gives the necessary estimates.

Lemma 5.22 Let p ≥ 1. The map A 7→ µA taking an n×n normal matrix to its
spectral measure is Lipschitz with constant n−1/max{p,2} with respect to Wp. In
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particular, if ρ is any fixed probability measure on C, the map A 7→ Wp(µA, ρ)
is Lipschitz with constant n−1/max{p,2}.

Proof If A and B are n × n normal matrices, then the Hoffman–Wielandt
inequality [11, Theorem VI.4.1] states that

min
σ∈Σn

n∑
j=1

∣∣∣λ j(A) − λσ( j)(B)
∣∣∣2 ≤ ‖A − B‖2HS , (5.13)

where λ1(A), . . . , λn(A) and λ1(B), . . . , λn(B) are the eigenvalues (with multi-
plicity, in any order) of A and B respectively, and Σn is the group of permuta-
tions on n letters. Defining couplings of µA and µB given by

πσ =
1
n

n∑
j=1

δ(λ j(A),λσ( j)(B))

for σ ∈ Σn, it follows from (5.13) that

Wp(µA, µB) ≤ min
σ∈Σn

1
n

n∑
j=1

∣∣∣λ j(A) − λσ( j)(B)
∣∣∣p1/p

≤ n−1/max{p,2}min
σ∈Σn

 n∑
j=1

∣∣∣λ j(A) − λσ( j)(B)
∣∣∣21/2

≤ n−1/max{p,2} ‖A − B‖HS . �

Now, by Theorem 3.14, µn,m is equal in distribution to the spectral measure
of a block-diagonal n× n random matrix U1 ⊕ · · · ⊕Um, where the U j are inde-
pendent and uniform in U

(⌊
n
m

⌋)
and U

(⌈
n
m

⌉)
. Identify µn,m with this measure

and define the function F(U1, . . . ,Um) = Wp(µU1⊕···⊕Um , ν); the preceding dis-
cussion means that if U1, . . . ,Um are independent and uniform in U

(⌊
n
m

⌋)
and

U
(⌈

n
m

⌉)
as necessary, then F(U1, . . . ,Um) d

= Wp(µn,m, ν).
Applying the concentration inequality in Corollary 5.17 to the function F

gives that

P
[
F(U1, . . . ,Um) ≥ EF(U1, . . . ,Um) + t

]
≤ e−nt2/24mL2

,

where L is the Lipschitz constant of F, and we have used the trivial estimate⌊
n
m

⌋
≥ n

2m . Inserting the estimate of EF(U1, . . . ,Um) from Equation (5.12) and
the Lipschitz estimates of Lemma 5.22 completes the proof of Theorem 5.18.
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Notes and References

The general approach to concentration of measure taken here follows the writ-
ings of Michel Ledoux, in particular his book [72] and lecture notes [71]. I
learned the proof of Theorem 5.9 from Nathaël Gozlan. The book [2] is a
very accessible source for learning about log-Sobolev inequalities (if you read
French). The book [13] by Boucheron, Lugosi and Massart gives a more recent
perspective with many applications.

A good reference for the basic notions of Riemannian geometry is [105].
Most of the exposition in Section 5.3 of the specific computations on the
groups follows the corresponding exposition in the book [1] of Anderson,
Guionnet and Zeitouni. The fact that the curvature on (most of) the classi-
cal compact groups leads to sub-Gaussian concentration was first observed by
Gromov and Milman [51], following earlier work of Gromov [50]; see also the
appendix by Gromov in [85]. The Bakry–Émery Theorem first appeared in [8];
see also [9]. The coupling argument which circumvents the lack of a curvature
bound on U (n) first appeared in [80].

The results of Section 5.4 are from [80], following earlier work in [79]. The
use of the determinantal structure in obtaining bounds on expected Wasserstein
distances was introduced by Dallaporta in [25, 26]. A survey of concentration
of empirical spectral measures in many ensembles, including Haar measure on
the classical compact groups, can be found in [76].



6
Geometric applications of measure

concentration

6.1 The Johnson–Lindenstrauss lemma

An important area of application in computing is that of dimension-reduction.
The essential problem is that in many settings, data sets live in very high-
dimensional spaces. For example, a digital image can be encoded as a matrix,
with each entry corresponding to one pixel, and the entry specifying the color
of that pixel. That is, a small black and white image whose resolution was, say,
100 × 150 pixels would be encoded as a vector in {0, 1}15,000. This presents a
real problem because many algorithms for analyzing such high-dimensional
data have their run-time increase very quickly as the dimension of the data
increases, to the point that analyzing the data in the most obvious way becomes
computationally infeasible – computer scientists refer to this as “the curse of
dimensionality”. The idea of dimension reduction is that in many situations, the
desired algorithm can be at least approximately carried out in a much lower-
dimensional setting than the one the data naturally lie in, which can make
computationally infeasible problems feasible.

A motivating problem

Suppose you have a data set consisting of black and white images of hand-
written examples of the numbers 1 and 2. That is, you have a library X of n
points in Rd, where d is the number of pixels in each image, with each point
labeled (by a human) to indicate whether it is a 1 or a 2. You want to design
a computer program so that one can input an image of a hand-written number,
and the computer identifies it as a 1 or a 2. So the computer will have a query
point q ∈ Rd, and the natural thing to do is to program it to find the closest
point in the library X to q; the computer then reports that the input image was
of the same number as that closest point in X.

167
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The naı̈ve approach would be for the computer to calculate the distance from
q to each of the points of X in turn, keeping track of which point in X has so
far been the closest. Such an algorithm runs in O(nd) steps, which may be
prohibitively many.

The idea of dimension reduction is to find a way to carry out the nearest
point algorithm within some much lower-dimensional space, in such a way
that you are guarranteed (or to be more realistic, very likely) to still find the
closest point, without having to do much work to figure out which lower-
dimensional space to work in. This sounds impossible, but the geometry of
high-dimensional spaces often turns out to be surprising. The following im-
portant result about high-dimensional geometry has inspired many randomized
algorithms incorporating dimension-reduction.

Lemma 6.1 (The Johnson–Lindenstrauss Lemma) There are absolute con-
stants c,C such that the following holds.

Let {x j}
n
j=1 ⊆ R

d, and let P be a random k × d matrix, consisting of the
first k rows of a Haar-distributed random matrix in O (d). Fix ε > 0 and let
k =

a log(n)
ε2 . With probability 1 −Cn2− ac

4

(1 − ε)‖xi − x j‖
2 ≤

(
d
k

)
‖Pxi − Px j‖

2 ≤ (1 + ε)‖xi − x j‖
2 (6.1)

for all i, j ∈ {1, . . . , n}.

That is, if n points in Rd are projected onto a random subspace of dimension
on the order of log(n), then after appropriate rescaling, the pairwise distances
between the points hardly changes. The practical conclusion of this is that if
the application in question is about the metric structure of the data (finding the
closest point as above, finding the most separated pair of points, finding the
minimum length spanning tree of a graph, etc.), there is no need to work in the
high-dimensional space that the data naturally live in, and that moreover there
is no need to work hard to pick a lower-dimensional subspace onto which to
project: a random one should do.
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Getting an almost-solution, with high probability

The discussion above suggests finding an approximate solution to the problem
of finding the closest point to q in X by choosing a random k×d matrix P to be
the first k rows of a Haar-distributed U ∈ O (d), then finding the closest point
in {Px :∈ X} to Pq. There are two obvious causes for concern. One is that we
might have the bad luck to choose a bad matrix P that doesn’t satisfy (6.1). But
that is very unlikely, and so typically one just accepts that risk and assumes it
won’t actually happen in practice.

There is a second issue, though, which is that it is possible to choose P that
does satisfy (6.1), but to have the closest point in {Px :∈ X} to Pq be Py,
whereas the closest point in X to q is z, with y , z. In that case, although the
approach above will yield the wrong identity for the closest point (y instead of
z), it follows by choice of y and (6.1) that

‖q − y‖ ≤

√
d

k(1 − ε)
‖Pq − Py‖ ≤

√
d

k(1 − ε)
‖Pq − Pz‖ ≤

√
1 + ε

1 − ε
‖q − z‖.

So even though z is the true closest point to q, y is almost as close. In our
example of recognizing whether a hand-written number is a 1 or a 2, it seems
likely that even if we don’t find the exact closest point in the reference set, the
algorithm will still manage to correctly identify the number.

The payoff for being willing to accept an answer which may be not quite
right, and accepting the (tiny) risk that we’ll choose a bad matrix is significant.
The naı̈ve algorithm mentioned at the beginning now runs in O(n log(n)) steps,
rather than O(nd) steps.

Proof of the Johnson-Lindenstrauss lemma

Given {xi}
n
i=1 ⊆ R

d, ε > 0, and U a Haar-distributed random matrix in O (d),
let P be the k×d matrix consisting of the first k rows of U. The goal is to show
that for each pair (i, j),

(1 − ε)‖xi − x j‖
2 ≤

(
d
k

) ∥∥∥Pxi − Px j

∥∥∥2
≤ (1 + ε)‖xi − x j‖

2

with high probability, or equivalently,

√
1 − ε ≤

√
d
k

∥∥∥Pxi, j

∥∥∥ ≤ √1 + ε

for xi, j := xi−x j

‖xi−x j‖
.
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For notational convenience, fix i and j for the moment and let x = xi, j. By
the translation-invariance of Haar measure,

Px d
= Pe1 = (U11, . . . ,Uk1),

where e1 is the first standard basis vector in Rd. Since the first column of U is
distributed as a uniform random vector in Sd−1, we may furthermore write

Px d
= (X1, . . . , Xk),

with X = (X1, . . . , Xd) uniform in Sd−1. Consider therefore the function F :
Sd−1 → R defined by

F(x1, . . . , xd) =

√
d
k

∥∥∥∥(x1, . . . , xk)
∥∥∥∥ =

√
d
k

(
x2

1 + · · · + x2
k

)
.

Let x, y ∈ Sd−1; then∣∣∣∣F(x) − F(y)
∣∣∣∣ =

√
d
k

∣∣∣∣∥∥∥(x1, . . . , xk)
∥∥∥ − ∥∥∥(y1, . . . , yk)

∥∥∥∣∣∣∣
≤

√
d
k

∥∥∥∥(x1 − y1, . . . , xk − yk)
∥∥∥∥ ≤ √

d
k

∥∥∥x − y
∥∥∥.

That is, the function F is
√

d
k -Lipschitz on Sd−1, and so concentration of

measure on the sphere (i.e., Lévy’s lemma) applies:

P [|F(X) − EF(X)| ≥ ε] ≤ Ce−ckε2
. (6.2)

To complete the proof, it remains to show that EF(X) ≈ 1.
Since EX2

i = 1
d for each i, E

[
F2(X)

]
= 1; written slightly differently,

1 = Var(F(X)) +
(
EF(X)

)2
.

By Fubini’s theorem and the concentration inequality (6.2),

Var(F(X)) =

∫ ∞

0
P
[
|F(X) − EF(X)|2 ≥ t

]
dt ≤

∫ ∞

0
Ce−cktdt =

C
ck
,

so that √
1 −

C
ck
≤ EF(X) ≤ 1.

Recall that k =
a log(n)
ε2 . As long as ε <

ca log(n)
C+ca log(n) , this means that 1 − ε

2 ≤

EF(X) ≤ 1, and so

P
[∣∣∣F(X) − 1

∣∣∣ > ε] ≤ Ce−
ckε2

4 ; (6.3)
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that is, with probability at least 1 −Ce−
ckε2

4 ,

1 − ε ≤

√
d
k
‖Px‖ ≤ 1 + ε.

Returning to the original formulation, for each pair (i, j), there is a set of
probability at least 1 −Ce−

ckε2
4 such that

(1 − ε)2‖xi − x j‖
2 ≤

(
d
k

) ∥∥∥Pxi − Px j

∥∥∥2
≤ (1 + ε)2‖xi − x j‖

2.

There are fewer than n2 pairs (i, j), so a simple union bound gives that the
above statement holds for all pairs (i, j) with probability at least 1− C

n
ac
4 −2 . �

6.2 Dvoretzky’s theorem

The following theorem is one of the foundational results of the local theory
of Banach spaces; V. Milman’s proof [84] gave the first explicit use of the
concentration of measure phenomenon in Banach space theory.

Theorem 6.2 (Dvoretzky’s theorem) Let ‖ · ‖ be an arbitrary norm on Cn.
There is an invertible linear map T : Rn → Rn such that for all ε > 0, if
k ≤ Cε2 log(n) and if E ⊆ Rn is a random k-dimensional subspace of Rn, then
with probability at least 1 − e−ck,

1 − ε ≤
‖Tv‖
|v|
≤ 1 + ε for all v ∈ E,

where c,C are absolute constants, independent of ‖ · ‖, and | · | denotes the
Euclidean norm.

The phrase “random k-dimensional subspace” in the statement of the the-
orem should be understood as in the previous section: as the linear span of
the first k columns of U, where U is distributed according to Haar measure
on U (n). The distribution of such a random subspace is the unique probability
measure on the Grassmannian GCn,k of k-dimensional subspaces of Cn which is
invariant under the action of U (n).

Milman’s proof of Dvoretzky’s theorem used the concentration of measure
on the sphere, but using the more recently proved concentration of measure on
the unitary group, one can deduce the theorem more directly. Before proceed-
ing with the main body of the proof, we make a simple geometric reduction.
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Throughout this section, ‖ · ‖ will denote the arbitrary norm in the statement of
the theorem, and | · | will denote the Euclidean norm.

Recall that an ellipsoid is defined to be a linear image of the Euclidean unit
ball Sn

C. By applying an initial linear transformation, it suffices to assume that
the ellipsoid of maximal volume contained in the unit ball of the norm ‖ · ‖ is
Sn
C itself. This implies in particular that

‖v‖ ≤ |v| for all v ∈ Cn.

Our approach to Theorem 6.2 centers around the random quantity

Xv(U) := ‖Uv‖ − E‖Uv‖,

where v ∈ Cn is a fixed unit vector, and U is a random unitary matrix. In
particular, for a subspace E ⊆ Cn, the supremum

sup
v∈E∩Sn

C

|Xv(U)|

measures the (random) variability of the quantity ‖Uv‖ over v ∈ E.

Proposition 6.3 For v ∈ Sn
C, let Xv(U) = ‖Uv‖ − E‖Uv‖, with U a Haar-

distributed random unitary matrix. Let E ⊆ Cn be any subspace. Then

P


∣∣∣∣∣∣∣ sup
v∈E∩Sn

C

|Xv(U)| − E

 sup
v∈E∩Sn

C

|Xv(U)|


∣∣∣∣∣∣∣ > t

 ≤ Ce−cnt2
.

Proof Let U,U′ ∈ U (n). Then∣∣∣∣∣∣sup
v
|Xv(U)| − sup

v
|Xv(U′)|

∣∣∣∣∣∣ ≤ sup
v

∣∣∣|Xv(U)| − |Xv(U′)|
∣∣∣

= sup
v

∣∣∣∣∣∣∣‖Uv‖ − E‖Uv‖
∣∣∣ − ∣∣∣‖Uv‖ − E‖U′v‖

∣∣∣∣∣∣∣
≤ sup

v
‖(U − U′)v‖

≤ ‖U − U′‖H.S .,

making use of the facts that ‖ · ‖ ≤ | · | and ‖ · ‖op ≤ ‖ · ‖H.S ..
The function U 7→ supv |Xv(U)| is thus 1-Lipschitz, and the result follows

from Theorem 5.17. �

The random quantity supv∈E∩Sn
C
|Xv(U)| is thus typically close to its mean;

the following lemma is the main ingredient needed to estimate that mean.

Lemma 6.4 Let x, y ∈ Sn
C with x , y, and let U be a random n × n unitary

matrix. Then for all t > 0,

P
[∣∣∣‖Ux‖ − ‖Uy‖

∣∣∣ > t
]
≤ Ce−

cnt2

|x−y|2 .
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Proof First, note that ‖U(eiθy)‖ = ‖Uy‖ for any θ. Choosing θ such that〈
x, eiθy

〉
is real and nonnegative means that Re

(〈
x, eiθy

〉)
≥ Re (〈x, y〉), and

so

|x − eiθy|2 = |x|2 + |y|2 − 2 Re
(〈

x, eiθy
〉)
≤ |x − y|2.

We may therefore assume that 〈x, y〉 is real. Let z := x+y
2 and w := x−y

2 , so that

x = z + w y = z − w z ⊥ w;

in terms of z and w, the desired conclusion is

P
[∣∣∣‖Uz + Uw‖ − ‖Uz − Uw‖

∣∣∣ > t
]
≤ Ce−

cnt2

|w|2 .

By the translation-invariance of Haar measure, it suffices to assume that
z = e1 (the first standard basis vector). Observe that, conditional on the event
{Ue1 = u}, the distribution of Uw is the same as that of −Uw: conditioning
on Ue1 = u simply means choosing the first column of U to be u, and filling
out the rest of the matrix column by column as described in Section 1.2. In
particular, the conditional distribution of U given Ue1 = u is invariant under
changing the sign of each of the remaining columns; doing so replaces Uw by
−Uw. It follows that

E
[
‖u + Uw‖ − ‖u − Uw‖

∣∣∣∣Ue1 = u
]

= 0.

Moreover, if U ∈ U (n) with Ue1 = u, the function U 7→ ‖u + Uw‖ is a |w|-
Lipschitz function of the remaining columns: if U′ is another such matrix, then∣∣∣∣‖u + Uw‖ − ‖u + U′w‖

∣∣∣∣ ≤ ‖(U − U′)w‖ ≤ |(U − U′)w| ≤ ‖U − U′‖H.S .|w|,

again using that ‖ · ‖ ≤ | · | and ‖ · ‖op ≤ ‖ · ‖H.S ..
The conditional version of the column by column construction of Haar mea-

sure described above makes it clear that conditional on Ue1 = u, the rest of
the matrix U is distributed according to Haar measure on a copy of U (n − 1)
embedded in U (n), and so Theorem 5.17 applies to give that for each u,

P
[∣∣∣‖Uz + Uw‖ − ‖Uz − Uw‖

∣∣∣ > t
∣∣∣∣Ue1 = u

]
≤ Ce−

cnt2

|w|2 .

Averaging over u completes the proof. �

Proposition 6.5 Let E ⊆ Cn be a subspace of dimension k. Then

E sup
v∈E∩Sn

C

|Xv| ≤ C

√
k
n
.
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Proof Lemma 6.4 shows exactly that the stochastic process {Xv}v∈E∩Sn
C

is sub-
Gaussian, with respect to the metric |·|

√
n . Under a sub-Gaussian increment con-

dition, Dudley’s entropy bound (see, e.g., [102]) gives that

E sup
v∈E∩Sn

C

|Xv| ≤ C
∫ ∞

0

√
log

(
N

(
E ∩ Sn

C
,
| · |
√

n
, ε

))
dε

=
C
√

n

∫ ∞

0

√
log

(
N

(
E ∩ Sn

C
, | · |, ε

))
dε,

where the covering number N
(
E ∩ Sn

C, | · |, ε
)

is the number of ε-balls needed
to cover E ∩ Sn

C, with respect to the distance | · |. In particular, the integrand is
zero for ε > 2. The covering number can be bounded using a simple volume
argument (see Lemma 2.6 of [85]) by exp

(
k log

(
3
ε

))
, and this completes the

proof.
�

Combining Propositions 6.3 and 6.5 gives that if E is a k-dimensional sub-
space of Cn, then with probability at least 1 −Ce−cnt2

,∣∣∣∣‖Uv‖ − E‖Uv‖
∣∣∣∣ ≤ t + C

√
k
n

for all v ∈ E; the next step of the proof of Theorem 6.2 is to estimate E‖Uv‖.

Proposition 6.6 There is a universal constant c such that for v ∈ Cn with
|v| = 1, U a random unitary matrix, and ‖ · ‖ as above,

c

√
log(n)

n
≤ E‖Uv‖ ≤ 1.

Proof The upper bound is trivial, since ‖ · ‖ ≤ | · |.
For the lower bound, it follows from the Dvoretzky-Rogers lemma and its

proof (see Lemma 3.16 of [73]) that, under the condition on ‖·‖ discussed at the
beginning of the section (i.e., that the maximum-volume ellipsoid contained in
the unit ball of ‖ · ‖ is in fact the Euclidean unit ball), there is an orthonormal
basis {v1, . . . , vn} of Rn such that

‖v j‖ ≥
1
2
, 1 ≤ j ≤

⌊n
2

⌋
;

by applying a further linear isometry, we assume that this estimate holds for
the standard basis {ei}.

Now, Uv d
= X,where X is uniformly distributed on Sn

C. Moreover, if (ε1, . . . , εn)
is a random vector of i.i.d. centered {−1, 1}-valued random variables, then
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X d
= (ε1X1, . . . , εnXn). For fixed j, conditional on X and ε j, it follows by

Jensen’s inequality that

|X j|
∥∥∥e j

∥∥∥ =
∥∥∥∥E [

(ε1X1, . . . , εnXn)
∣∣∣ε j, X

] ∥∥∥∥ ≤ E [ ∥∥∥(ε1X1, . . . , εnXn)
∥∥∥ ∣∣∣ ε j, X

]
.

Averaging over ε j gives

|X j|
∥∥∥e j

∥∥∥ ≤ E [ ∥∥∥(ε1X1, . . . , εnXn)
∥∥∥ ∣∣∣ X

]
.

Taking the maximum over j ∈ {1, . . . ,m} and then taking expectation of both
sides gives

E

[
max
1≤ j≤m

|X j|‖e j‖

]
≤ E‖(ε1X1, . . . , εnXn)‖ = E‖X‖,

and so

E‖X‖ ≥
1
2
E

[
max
1≤ j≤m

|X j|

]
, (6.4)

where m :=
⌊

n
2

⌋
. To estimate the right-hand side of (6.4), we use a standard

trick of relating the spherical expectation to a corresponding Gaussian one.
Note that a uniform random vector on Sn

C can be naturally identified with a
uniform random vector on S2n, so there is no loss in considering the real case.
(That the uniform measure on Sn

C
is mapped to uniform measure on S2n by the

obvious identification is slightly non-trivial, but follows by the uniqueness of
Haar measure and the fact that U (n) acts transitively on Sn

C.)
Let {Z1, . . . ,Zn} be i.i.d. standard Gaussian random variables. Then it is well-

known that there is a constant ρ such that

E

[
max
1≤ j≤m

|Z j|

]
≥ 2ρ

√
log(m).

Writing the expectation above explicitly in terms of the density of the Z j in
spherical coordinates gives

E

[
max
1≤ j≤m

|Z j|

]
=

1
(2π)m/2

∫
Sm−1

∫ ∞

0
max
1≤ j≤m

|ry j|e−r2/2rm−1drdσ(y)

=
Γ
(

m+1
2

)
√

2πm/2

∫
Sm−1

max
1≤ j≤m

|y j|dσ(y),

where σ denotes the surface area measure on Sm−1. The surface area of the unit
sphere in Rm is mπm/2

Γ( m
2 +1) , and so rearranging above and applying the lower bound

(6.4) gives

E

[
max
1≤ j≤m

|X j|

]
≥

2
√

2ρ
√

log(m)Γ
(

m
2 + 1

)
mΓ

(
m+1

2

) ≥ c

√
log(m)

m
,
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where the last estimate follows from Stirling’s formula.
�

We are now in a position to complete the proof of Dvoretzky’s theorem.
Let M := E‖Ue1‖, and for ε > 0 fixed, let k = cnM2ε2, where c is a small
(but universal) constant. Applying Proposition 6.3 with t = Mε

2 gives that for
any k-dimensional subspace E ⊆ Cn, with probability at least 1 − Ce−cnε2 M2

≥

1 −Ce−cε2 log(n),

M(1 − ε) ≤ ‖Uv‖ ≤ M(1 + ε),

for all v ∈ E with |v| = 1. In particular, let E be the span of {e1, . . . , ek}. Then
the statement above means that with probability at least 1 −Ce−cε2 log(n),

1 − ε ≤
1
M ‖w‖
|w|

≤ 1 + ε

for all w in the linear span of the first k columns of U; that is, for all w in
a randomly chosen k-dimensional subspace of Cn. Absorbing the constant M
into the linear map T in the statement of Theorem 6.2 completes the proof.

6.3 A measure-theoretic Dvoretzky theorem

In this section, the objects of study are the marginal distributions of high-
dimensional probability measures. It was recognized long ago that in many set-
tings, most one-dimensional projections of high-dimensional probability mea-
sures are approximately Gaussian. In particular, Borel’s lemma (Lemma 2.4)
is an early example: all one-dimensional projections of uniform measure on
the sphere in Rd are the same, and all are approximately Gaussian for large
d. This is also a familiar phenomenon in statistics, in which low-dimensional
projections of high-dimensional data which appear approximately Gaussian
are usually regarded as not giving useful information about the structure of the
data.

It is natural to ask under what conditions on the high-dimensional distri-
bution this phenomenon occurs, and moreover, how long it persists; i.e., if a
d-dimensional probability distribution is projected onto a k-dimensional sub-
space, how large can k be relative to d so that such projections are typically
approximately Gaussian?

The connection to Dvoretzky’s theorem is the following. In both settings,
an additional structure is imposed on Rn (a norm in the case of Dvoretzky’s
theorem; a probability measure in the present context); in either case, there is
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a particularly nice way to do this (the Euclidean norm and the Gaussian distri-
bution, respectively). The question is then: if one projects an arbitrary norm or
probability measure onto lower dimensional subspaces, does it tend to resem-
ble this nice structure? If so, by how much must one reduce the dimension in
order to see this phenomenon?

Theorem 6.7 Let X be a random vector in Rd satisfying

E|X|2 = σ2d E||X|2σ−2 − d| ≤ L
d

(log d)1/3 sup
ξ∈Sd−1

E 〈ξ, X〉2 ≤ 1.

Let X(k)
V :=

(
〈X,V1〉 , . . . , 〈X,Vk〉

)
, where

V =


— V1 —

...

— Vd —


is an orthogonal matrix. Fix δ < 2 and suppose that k = δ

log(d)
log(log(d)) . Then there

is a c > 0 depending only on δ such that for ε = exp
[
−c log(log(d))

]
, there is

a subset T ⊆ O (d) with P[T] ≥ 1 −C exp
(
−c′dε2

)
, such that for all V ∈ T,

dBL(X(k)
V , σZ) ≤ C′ε.

The following example shows that, without additional assumptions, the the-
orem gives the best possible estimate on k.

Let X be distributed uniformly among {±
√

de1, . . . ,±
√

ded}, where the ei

are the standard basis vectors of Rd. That is, X is uniformly distributed on the
vertices of a cross-polytope. Then E[X] = 0, |X|2 ≡ d, and given ξ ∈ Sd−1,
E 〈X, ξ〉2 = 1, thus Theorem 6.7 applies.

Consider a projection of {±
√

de1, . . . ,±
√

ded} onto a random subspace E
of dimension k, and define the Lipschitz function f : E → R by f (x) :=
(1 − d(x, S E))+ , where S E is the image of {±

√
de1, . . . ,±

√
ded} under projec-

tion onto E and d(x, S E) denotes the (Euclidean) distance from the point x to
the set S E . Then if µS E denotes the probability measure putting equal mass at
each of the points of S E ,

∫
f dµS E = 1. On the other hand, the volume ωk of the

unit ball inRk is asymptotically given by
√

2
√

kπ

[
2πe

k

] k
2 for large k, in the sense that

the ratio tends to one as k tends to infinity. It follows that the standard Gaus-

sian measure of a ball of radius 1 in Rk is bounded by 1
(2π)k/2ωk ∼

√
2
√

kπ

[
e
k

] k
2 . If

γk denotes the standard Gaussian measure in Rk, then this estimate means that∫
f dγk ≤

2
√

2d
√

kπ

[
e
k

] k
2 . Now, if k =

c log(d)
log(log(d)) for c > 2, then this bound tends to

zero, and thus dBL(µS E , γk) is close to 1 for any choice of the subspace E; the
measures µS E are far from Gaussian in this regime.
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This example together with Theorem 6.7 show that the phenomenon of typi-
cally Gaussian marginals persists for k =

c log(d)
log(log(d)) for c < 2, but fails in general

if k =
c log(d)

log(log(d)) for c > 2.

The proof of Theorem 6.7 is in several steps. Borrowing terminology from
statistical mechanics, we first consider the “annealed” version of X(k)

V , in which
V is taken to be random and independent of X, and show that it is approxi-
mately Gaussian. Then, we show that the random distance between a “quenched”
version of X(k)

V and its annealed (i.e., averaged) version is strongly concentrated
at its mean. Finally, we estimate this “average distance to average”.

Theorem 6.8 Let X be a random vector in Rn, with EX = 0, E
[
|X|2

]
= σ2d,

and

E
∣∣∣|X|2σ−2 − d

∣∣∣ := A < ∞.

Suppose that V is distributed according to Haar measure on O (d) and inde-
pendent of X, and let X(k)

V =
(
〈X,V1〉 , . . . , 〈X,Vk〉

)
, where Vi is the ith row of

V. Then

dBL(X(k)
V , σZ) ≤

σ
√

k(A + 1) + σk
d − 1

.

Proof The proof is via the version of Stein’s method given in Theorem 2.21,
Section 2.4. Observe first that EX(k)

V = 0 by symmetry and if vi j denotes the
i- jth entry of V, then

E(X(k)
V )i(X

(k)
V ) j = E 〈Vi, X〉

〈
V j, X

〉
=

d∑
r,s=1

E
[
virv js

]
E [XrXs] =

δi j

d
E

[
|X|2

]
= δi jσ

2,

thus E[X(k)
V (X(k)

V )T ] = σ2Id.
The construction of XV,ε for the application Theorem 2.21 is analogous to

the construction of exchangeable pairs of random matrices in Section 2.4. Let

Aε :=
√1 − ε2 ε

−ε
√

1 − ε2

 ⊕ Id−2 = Id +

− ε2

2 + δ ε

−ε − ε
2

2 + δ

 ⊕ 0d−2,

where δ = O(ε4). Let U ∈ O (d) be a random orthogonal matrix, independent
of X and V, and define

XV,ε :=
(〈

UAεUT V1, X
〉
, . . . ,

〈
UAεUT Vk, X

〉)
;

the pair (X(k)
V , XV,ε) is exchangeable by the rotation invariance of the distribu-

tion of V, and so X(k)
V

d
= XV,ε .
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Let K be the d × 2 matrix given by the first two columns of U and let C =[
0 1
−1 0

]
; define the matrix Q =

[
qi j

]d
i, j=1 = KCKT . Then

UAεUT − Id =

(
−
ε2

2
+ δ

)
KKT + εQ,

and so, writing X(k)
V = (XV

1 , . . . , X
V
k ) and XV,ε = (XV

ε,1, . . . , X
V
ε,k),

E
[
XV
ε, j − XV

j

∣∣∣X,V]
= E

[〈
(UAεUT − Id)V j, X

〉 ∣∣∣X,V]
= εE

[〈
QV j, X

〉 ∣∣∣X,V]
−

(
ε2

2
+ δ

)
E

[〈
KKT V j, X

〉 ∣∣∣X,V]
.

Recall that Q and K are determined by U alone, and that U is independent of
X,V. It is easy to show that E

[
Q

]
= 0d and E

[
KKT ]

= 2
d Id, thus

E
[
XV,ε − X(k)

V

∣∣∣X,V]
=

(
−
ε2

d
+

2δ
d

)
X(k)

V .

Condition 1 of Theorem 2.21 is thus satisfied with λ(ε) = ε2

d .
It follows from the formula given in Lemma 2.22 that Eqrsqtw = 2

d(d−1)
[
δrtδsw−

δrwδst
]
, which yields

E
[
(XV

ε, j − XV
j )(XV

ε,` − XV
` )

∣∣∣X,V]
= ε2E

[〈
QV j, X

〉
〈QV`, X〉

∣∣∣X,V]
+ O(ε3)

= ε2
d∑

r,s,t,w=1

E
[
qrsqtwv jsv`wXrXt

∣∣∣X,V]
+ O(ε3)

=
2ε2

d(d − 1)

 d∑
r,s=1

v jsv`sX2
r −

d∑
r,s=1

v jsv`rXrXs

 + O(ε3)

=
2ε2

d(d − 1)

[
δ j` |X|2 − XV

j XV
`

]
+ O(ε3)

=
2ε2σ2

d
δ j` +

2ε2

d(d − 1)

[
δ j`

(
|X|2 − σ2d

)
+ δ j`σ

2 − XV
j XV

`

]
+ O(ε3).

The random matrix F of Theorem 2.21 is therefore defined by

F =
1

d − 1

[(
|X|2 − σ2d

)
Ik + σ2Ik − X(k)

V (X(k)
V )T

]
.
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It now follows from Theorem 2.21 that

dBL(X(k)
V , σZ) ≤ W1(X(k)

V , σZ)

≤
1
σ
E‖F‖H.S .

≤
σ
√

k
d − 1

[
E

∣∣∣∣∣∣ |X|2σ2 − d

∣∣∣∣∣∣ + 1
]

+
σ

d − 1
E

∑
j

XV
j

σ

2
≤
σ
√

k(A + 1) + σk
d − 1

.

(6.5)

�

The next result gives the concentration of dBL(X(k)
V , σZ) about its mean. The

idea is very similar to the argument at the end of Section 5.4 on the concentra-
tion of the empirical spectral measure.

Theorem 6.9 Let X ∈ Rd be a centered random vector, with E
[
|X|2

]
= σ2d,

and let

B := sup
ξ∈Sd−1

E 〈X, ξ〉2 .

The function

V 7−→ dBL(X(k)
V , σZ)

on O (d) can be viewed as a random variable, by letting V be distributed ac-
cording to Haar measure onO (d). Then there are universal constants C, c such
that for any ε > 0,

P
[∣∣∣dBL(X(k)

V , σZ) − EdBL(X(k)
V , σZ)

∣∣∣ > ε] ≤ Ce−
cdε2

B .

Proof Define a function F : O (d)→ R by

F(V) = sup
‖ f ‖BL≤1

∣∣∣EX f (X(k)
V ) − E f (σZ)

∣∣∣,
where EX denotes the expectation with respect to the distribution of X only.
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Let V,V′ ∈ O (d); observe that for f with ‖ f ‖BL ≤ 1 given,∣∣∣∣∣∣∣EX f (X(k)
V ) − E f (σZ)

∣∣∣ − ∣∣∣EX f (X(k)
V′ ) − E f (σZ)

∣∣∣∣∣∣∣
≤

∣∣∣∣EX f (X(k)
V′ ) − EX f (X(k)

V ))
∣∣∣∣

=

∣∣∣∣∣E [
f
( 〈

X,V′1
〉
, . . . ,

〈
X,V′k

〉 )
− f

(
〈X,V1〉 , . . . , 〈X,Vk〉

)∣∣∣∣V,V′]∣∣∣∣∣
≤ E

[∣∣∣( 〈X,V′1 − V1
〉
, . . . ,

〈
X,V′k − Vk

〉 )∣∣∣∣∣∣∣V,V′]
≤

√√√ k∑
j=1

|V′j − V j|
2E

〈
X,

V′j − V j

|V′j − V j|

〉2

≤ ρ(V,V′)
√

B.

It follows that∣∣∣∣dBL(X(k)
V , σZ) − dBL(X(k)

V′ , σZ)
∣∣∣∣

=

∣∣∣∣∣∣ sup
‖ f ‖BL≤1

∣∣∣EX f (X(k)
V ) − E f (σZ)

∣∣∣ − sup
‖ f ‖BL≤1

∣∣∣EX f (X(k)
V′ ) − E f (σZ)

∣∣∣∣∣∣∣∣∣
≤ sup
‖ f ‖BL≤1

∣∣∣∣∣∣∣EX f (X(k)
V ) − E f (σZ)

∣∣∣ − ∣∣∣EX f (X(k)
V′ ) − E f (σZ)

∣∣∣∣∣∣∣
≤ ρ(V,V′)

√
B,

thus dBL(X(k)
V , σZ) is a Lipschitz function on O (d), with Lipschitz constant

√
B. Applying the concentration of measure inequality in Corollary 5.17 thus

implies that

P
[
|dBL(X(k)

V , σZ) − EdBL(X(k)
V , σZ)| > ε

]
< Ce−

cdε2
B .

�

The final component of the proof of Theorem 6.7 is to estimate the so-called
average distance to average.

Theorem 6.10 With notation as in the previous theorems,

EdBL(X(k)
V , σZ) ≤ C

(
kk−1Bk+2

d2

) 1
3k+4

+
σ[
√

k(A + 1) + k]
d − 1

.

Proof Let V ∈ O (d) and let U be a random orthogonal matrix, independent
of X. Then the function

V 7−→ dBL(X(k)
V , X(k)

U )
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can be viewed as a random variable, if V is now taken to be distributed ac-
cording to Haar measure. The essential idea of the proof is to view this ran-
dom variable as the supremum of a stochastic process: for f : Rk → R with
‖ f ‖BL ≤ 1, let

X f = X f (V) := EX f (X(k)
V ) − E f (X(k)

U ),

where again EX f (X(k)
V ) indicates expectation with respect to X only. Then {X f } f

is a centered stochastic process indexed by the set of functions f on Rk with
‖ f ‖BL ≤ 1, and

dBL(X(k)
V , X(k)

U ) = sup
‖ f ‖BL≤1

X f .

Concentration of measure on the orthogonal group implies that X f is a sub-
Gaussian process, as follows. Let f : Rk → R be Lipschitz with Lipschitz
constant L and consider the function G = G f defined on O (d) by

G(V) := EX f (X(k)
V ) = EX

[
f (〈V1, X〉 , . . . , 〈Vk, X〉)

]
,

where Vi denotes the ith row of V. It was shown in the course of the previous
proof that G(V) is a Lipschitz function on O (d), with Lipschitz constant L

√
B,

and so by Corollary 5.17 there are universal constants C, c such that

P [|G(V) − EG(V)| > ε] ≤ Ce−
cdε2

L2 B . (6.6)

It follows from Fubini’s theorem that if V a random orthogonal matrix, then
EG(V) = E f (X(k)

U ), for U Haar-distributed and independent of X as above.
Equation (6.6) can thus be restated as

P
[
|X f | > ε

]
≤ C exp

[
−

cdε2

L2B

]
.

Note that X f − Xg = X f−g, and so

P
[∣∣∣X f − Xg

∣∣∣ > ε] ≤ C exp
 −cdε2

2B| f − g|2L

 ≤ C exp
 −cdε2

2B‖ f − g‖2BL

 .
The process {X f } therefore satisfies the sub-Gaussian increment condition for
the metric space (BL1, d∗), where BL1 denotes the unit ball of the bounded-
Lipschitz norm and d∗( f , g) :=

√
B
√

cd
‖ f − g‖BL.

The idea is to apply Dudley’s entropy bound to this sub-Gaussian process;
however, it cannot be usefully applied to this infinite-dimensional indexing set.
We therefore make several reductions, beginning with a truncation argument.
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Let

ϕR(x) =


1 |x| ≤ R,

R + 1 − |x| R ≤ |x| ≤ R + 1,

0 R + 1 ≤ |x|,

and define fR := f · ϕR; if ‖ f ‖BL ≤ 1, then ‖ fR‖BL ≤ 2. Since | f (x) − fR(x)| = 0
if x ∈ BR and | f (x) − fR(x)| ≤ 1 for all x ∈ Rk,∣∣∣EX f (X(k)

V ) − EX fR(X(k)
V )

∣∣∣ ≤ PX
[
|X(k)

V | > R
]
≤

1
R2

k∑
i=1

EX
[
〈X,Vi〉

2 ]
≤

Bk
R2 ,

and the same holds if EX is replaced by E. It follows that
∣∣∣X f − X fR

∣∣∣ ≤ 2Bk
R2 .

Consider therefore the process X f indexed by BL2,R+1 (with norm ‖ · ‖BL), for
some choice of R to be determined, where

BL2,R+1 :=
{
f : Rk → R : ‖ f ‖BL ≤ 2; f (x) = 0 if |x| > R + 1

}
;

what has been shown is that

E
[

sup
‖ f ‖BL≤1

X f

]
≤ E

[
sup

f∈BL2,R+1

X f

]
+

2Bk
R2 . (6.7)

The next step is to approximate functions in BL2,R+1 by “piecewise linear”
functions. Specifically, consider a cubic lattice of edge length ε in Rk. Trian-
gulate each cube of the lattice into simplices inductively as follows: in R2, add
an extra vertex in the center of each square to divide the square into four trian-
gles. To triangulate the cube of Rk, first triangulate each facet as was described
in the previous stage of the induction. Then add a new vertex at the center of
the cube; connecting it to each of the vertices of each of the facets gives a
triangulation into simplices. Observe that when this procedure is carried out,
each new vertex added is on a cubic lattice of edge length ε

2 . Let L denote
the supplemented lattice comprised of the original cubic lattice, together with
the additional vertices needed for the triangulation. The number of sites of L
within the ball of radius R + 1 is then bounded by, e.g., c

(
3R
ε

)k
ωk, where ωk is

the volume of the unit ball in Rk. It is classical that the volume ωk of the unit

ball in Rk is asymptotically given by
√

2
√

kπ

[
2πe

k

] k
2 as k → ∞, so that the number

of sites is bounded by c
√

k

(
c′R
ε
√

k

)k
, for constants c, c′ which are independent of

d and k.
We now approximate f ∈ BL2,R+1 by the function f̃ defined such that f̃ (x) =

f (x) for x ∈ L, and the graph of f̃ is determined by taking the convex hull of
the vertices of the image under f of each k-dimensional simplex determined by
L. The resulting function f̃ still has ‖ f̃ ‖BL ≤ 2, and ‖ f − f̃ ‖∞ ≤ ε

√
k

2 , since the
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distance between points in the same simplex is bounded by ε
√

k
2 . Moreover, the

function f̃ lies inside the finite-dimensional vector space of functions whose
values are determined through the interpolation procedure described above by
their values at the points of L within the ball of radius R + 1. It thus follows
that

E
[

sup
f∈BL2,R+1

X f

]
≤ E

[
sup

f∈BL2,R+1

X f̃

]
+ ε
√

k, (6.8)

that the process {X f̃ } f∈BL2,R+1 is sub-Gaussian with respect to
√

B
√

cd
‖ · ‖BL, and

that { f̃ : f ∈ BL2,R+1} is the ball of radius 2 inside an M-dimensional normed
space, with

M =
c
√

k

(
c′R

ε
√

k

)k

. (6.9)

We have thus replaced a sub-Gaussian process indexed by a ball in an infinite-
dimensional space with one indexed by a ball in a finite-dimensional space,
where Dudley’s bound can finally be applied. Let T :=

{
f̃ : f ∈ BL2,R+1

}
; a

classical volumetric argument gives that the covering numbers of the unit ball B
of a finite-dimensional normed space (X, ‖ · ‖) of dimension M can be bounded
as N(B, ‖ · ‖, ε) ≤ exp

[
M log

(
3
ε

)]
. As a result,

N

T, √B
√

cd
‖ · ‖BL, ε

 ≤ exp
M log

c′
√

B

ε
√

d

 .
It follows from Dudley’s entropy bound that

E sup
f∈T

X f ≤

∫ 2
√

B
cd

0

√
M log

c′
√

B

ε
√

d

dε = L

√
MB
d
.

Combining this with (6.7) and (6.8) yields

E

 sup
‖ f ‖BL≤1

(EX f (XV) − E f (XU))
 ≤ 9kB

R2 + ε
√

k + L

√
MB
d
.

Using the value of M in terms of R given in equation (6.9) and choosing ε =(
B(c′R)k

dk
k+3

2

) 1
k+2

yields

E

 sup
‖ f ‖BL≤1

(EX f (XV) − E f (XU))
 ≤ 9kB

R2 + c̃
(

BRk

d
√

k

) 1
k+2

.
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Finally, choosing R =
(
dk

2k+5
2 Bk+1

) 1
3k+4 yields

E

 sup
‖ f ‖BL≤1

(EX f (XV) − E f (XU))
 ≤ L̃

(
kk−1Bk+2

d2

) 1
3k+4

.

Combining this with Theorem 6.8 completes the proof.
�

Notes and References

The Johnson–Lindenstrauss lemma was first proved in [62] as a step in show-
ing that any mapping from an n-point set in a metric space X into `2 can be ex-
tended to a Lipschitz mapping of all of X into `2, with the Lipschitz constant at
worst being multiplied by c

√
log(n). The lemma has found many applications

in computer science and other areas; see the book [103] by Vempala for an
extensive survey. The original proof used Gaussian random matrices; random
orthogonal matrices were first used in [46], and there is now a large literature
on alternative forms of randomness.

Dvoretzky’s theorem first appeared in [40], and an enormous literature has
grown up around the theorem and its applications. The recent book [4] has an
extensive history and discussion of modern viewpoints and connections. The
proof in the literature which is closest to the one given in Section 6.2 was
given by Aubrun, Szarek, and Werner in [5], following an earlier approach of
Schechtman [95].

Borel’s theorem on the distribution of a coordinate of a random point on
the sphere can be seen as a first example of the central limit theorem for con-
vex bodies; that is, that marginals of the uniform measure on high-dimensional
convex bodies are approximately Gaussian. Over the years, many authors made
contributions on this problem; see in particular [101, 34, 15, 68, 44]. Finally,
Klartag [69] showed that the typical total variation distance between a k-
dimensional marginal of uniform measure on a convex body (or, more gener-
ally, any log-concave distribution) in Rd and the corresponding Gaussian dis-
tribution is small even when k = dε (for a specific universal constant ε ∈ (0, 1)).
See the recent book [14] for an extensive survey of the central limit theorem
for convex bodies and related phenomena.

Theorem 6.7 first appeared in [78], and was an attempt to find the optimal
dependence of k on d when the assumption of log-concavity was removed.
The possible rate of growth of k as a function of d is indeed weaker than in
the result of [69] for log-concave measures; k can grow only a bit more slowly
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than logarithmically with d, rather than polynomially. However, as the exam-
ple following the theorem shows, either the log-concavity or some other addi-
tional assumption is necessary; with only the assumptions here, logarithmic-
type growth of k in d is best possible for the bounded-Lipschitz metric.



7
Characteristic polynomials and connections to

the Riemann ζ-function

In this chapter we give just a taste of the intriguing, and as yet unexplained,
connection between zeros of the Riemann zeta function and eigenvalues of
random matrices. A few pointers to the large literature on the subject are given
in the end of chapter notes.

7.1 Two-point correlations and Montgomery’s conjecture

The Riemann zeta function is defined on complex numbers s = σ + it with
σ > 1 by either the Dirichlet series or the Euler product

ζ(s) =

∞∑
n=1

1
ns =

∏
p

(
1 −

1
ps

)−1

,

where the product is over prime numbers p. The zeta function can be extended
to the complex plane by analytic continuation and has a simple pole at s =

1 and trivial zeros at s = −2n for n = 1, 2, 3, . . .. It has been known since
Riemann that the remaining zeros ρ = β + iγ all lie in the “critical strip”
{0 < β < 1}, and that the zeroes fall symmetrically about both the real line and
the line β = 1

2 (sometimes called the critical line), so that if ρ is a zero, so are
ρ, 1 − ρ, and 1 − ρ. The Riemann Hypothesis (RH) is that all of the nontrivial
zeros have β = 1

2 .
The interest in the Riemann Hypothesis lies in the connection between the

zeros of the zeta function and the distribution of prime numbers. This is of
course an enormous field of study, but the following gives a flavor of the con-
nection. The von Mangoldt function Λ(n) is defined by

Λ(n) =

log p, n = pm, p prime,m ≥ 1;

0, otherwise,

187
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and the Chebyshev function ψ(x) is given by

ψ(x) =
∑
n≤x

Λ(n).

The Chebychev function is closely related to the prime counting function π(x) =

{p ≤ x : p prime}, and the growth estimate

ψ(x) = x + O(x
1
2 (log x)2)

is equivalent to RH.
Over the years, many approaches to proving RH have been explored. One is

via spectral theory: let
{

1
2 + itn

}
n∈N

denote the non-trivial zeroes of the Riemann
zeta function, so that RH is the statement that the tn are all real. The Hilbert–
Pólya conjecture is the statement that there is an unbounded Hermitian opera-
tor whose eigenvalues are {tn}n∈N. This conjecture has inspired the idea that the
eigenvalues of this mysterious operator may behave like the eigenvalues of a
“random operator”, which could be modeled by a (large) random matrix. Most
classically, the model used was the GUE; i.e., a random matrix distributed ac-
cording to Gaussian measure in Hermitian matrix space. The eigenvalues of
random unitary matrices, and especially the spacings between them, have also
been considered in this context, and in fact in many of the resulting conjec-
tures, either random matrix model produces the same conjecture about the zeta
zeroes. It turns out that indeed, when zeta zeros and eigenvalues of random
matrices are compared numerically, their behavior matches astonishingly well.
This connection was first noticed in a chance meeting of Hugh Montgomery
and Freeman Dyson1, in the context of pair correlations.

In order to identify the appropriate correspondence between zeta zeroes and
eigenvalues, a first important observation is that the local density of zeta zeroes
at a given height within the critical strip is known. Let

n(T ) := |{ρ = β + iγ : ζ(ρ) = 0, 0 < γ ≤ T }| ,

n(T−) := |{ρ = β + iγ : ζ(ρ) = 0, 0 < γ < T }| ,

and

N(T ) :=
n(T ) + n(T−)

2
,

where in both n(T ) and n(T−), the zeros are counted with multiplicity. The
Riemann–von Mangoldt formula states that

N(T ) =
T
2π

log
( T
2πe

)
+

7
8

+ R(T ) + S (T ),

1 Said encounter is now a much-loved anecdote illustrating, among other things, the value of
department tea.
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where R(T ) = O( 1
T ) and

S (T ) =
1
π

arg
(
ζ

(
1
2

+ iT
))

= O(log(T )).

In particular, this says that the local density of zeros at height T is approxi-
mately 1

2π log
(

T
2π

)
. Since the average density of the eigenvalues of U ∈ U (n)

on the circle is n
2π , when comparing zeta zeroes and eigenvalues it makes sense

to compare eigenvalues of U ∈ U (n) with zeros of ζ at height T , with

n = log
( T
2π

)
,

so that the only natural parameter, namely the density of points, is the same.
We next transform the zeta zeros (and unitary eigenvalues correspondingly)

so that the average spacing is 1. Suppose (in this case, really just for conve-
nience of exposition) that RH holds, and order the zeros in the upper half-plane
ρn = 1

2 + itn so that 0 < t1 ≤ t2 ≤ · · · . Define the “unfolded zeros” by

wn :=
tn
2π

log
( tn
2π

)
,

so that by the Riemann–von Mangoldt formula,

lim
W→0

1
W

∣∣∣∣{wn : 0 < wn ≤ W
}∣∣∣∣ = 1.

For α < β and W > 0, define the functions

Fζ(α, β; W) =
1
W

∣∣∣∣{w j,wk ∈ [0,W] : α ≤ w j − wk < β
}∣∣∣∣

and

Fζ(α, β) = lim
W→∞

Fζ(α, β; W).

That is, Fζ gives the asymptotic density of zeta zeros separated by a prescribed
distance.

The so-called two-point correlation function R2,ζ(x) (we will see the con-
nection with our earlier use of this term shortly) can be defined by the formula

Fζ(α, β) =

∫ β

α

R2,ζ(x)dx + 1[α,β)(0).

A fundamental goal in understanding the distribution of the zeros of ζ is to
understand the behavior of the function Fζ(α, β), or equivalently, R2,ζ(x). To
do this, it is useful to generalize Fζ as follows: given a test function f , let

F2,ζ( f ; W) :=
1
W

∑
j,k

0<w j,wk≤W

f (w j − wk).
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In particular, F2,ζ(1[α,β); W) = Fζ(α, β; W). For certain test functions, limW→∞ F2,ζ( f ; W)
can be computed explicitly.

Theorem 7.1 (Montgomery [86]) Let f : R → R be such that f̂ (ξ) =∫ ∞
−∞

f (x)e2πixξdx is supported in (−1, 1). Then

lim
W→∞

F2,ζ( f ; W) =

∫ ∞

−∞

f (x)

1 − (
sin(πx)
πx

)2 dx.

Montgomery’s theorem unfortunately does not apply to f = 1[α,β); Mont-
gomery’s conjecture says that the theorem holds without the restriction on the
support of f̂ , so that for R2,ζ as defined above,

R2,ζ(x) = 1 −
(

sin(πx)
πx

)2

.

Back on the random matrix side, let U be a random unitary matrix with
eigenvalues {eiθ1 , . . . , eiθn }, and consider the rescaled eigenangles

φ j :=
(
θ j

2π

)
n,

so that the average spacing is 1. Consider the analog to F2,ζ( f ; W) given by

F2,U( f ) :=
1
n

n∑
j,k=1

f (φ j − φk).

Fix α < β and suppose that 0 < [α, β). Then

E
[
F2,U(1[α,β))

]
=

1
n
E

[∣∣∣∣{( j, k) : α ≤ φ j − φk < β
}∣∣∣∣]

=
1
n
E

[∣∣∣∣∣∣
{

( j, k) :
2πα

n
+ θk ≤ θ j <

2πβ
n

+ θk

}∣∣∣∣∣∣
]
.

For M ∈ N, divide [0, 2π) into M ordered subintervals I1, I2, . . . , IM of equal
length. It follows from the dominated convergence theorem that

1
n
E

[∣∣∣∣∣∣
{

( j, k) :
2πα

n
+ θk ≤ θ j <

2πβ
n

+ θk

}∣∣∣∣∣∣
]

=
1
n
E

 lim
M→∞

M∑
`=1

∣∣∣∣∣∣
{

( j, k) : θk ∈ I`, θ j ∈ I` +

[
2πα

n
,

2πβ
n

)}∣∣∣∣∣∣


=
1
n

lim
M→∞

 M∑
`=1

E
[
NI`NI`+

[
2πα

n ,
2πβ

n

)] .
Now, since 0 < [α, β), the intervals I` and I` +

[
2πα

n , 2πβ
n

)
are disjoint when N
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is large enough, and so for ρ2 the 2-point correlation function of the unitary
eigenangle process (see Section 3.2),

1
n

lim
M→∞

 M∑
`=1

E
[
NI`NI`+

[
2πα

n ,
2πβ

n

)]
=

1
n

lim
M→∞

 M∑
`=1

1
(2π)2

∫
I`

∫
I`+

[
2πα

n ,
2πβ

n

) ρ2(x, y)dxdy


=

1
2πn

∫ 2πβ
n

2πα
n

ρ2(0, y)dy

=
1

2π

∫ β

α

1 −
 sin(πu)

n sin
(
πu
n

) 2 du,

using the form of ρ2(x, y) given by the chart on page 88.
If 0 ∈ [α, β), then the argument above needs to be modified only slightly: in

that case,

M∑
`=1

E
[
NI`NI`+

[
2πα

n ,
2πβ

n

)] =

M∑
`=1

E
[
N2

I` + NI`N
(
I`+

[
2πα

n ,
2πβ

n

))
\I`

]
.

We have seen (Theorem 4.8) that Var(NI` ) = O(log(n)), and so

lim
n→∞

1
n

lim
M→∞

M∑
`=1

E[N2
I` ] = lim

n→∞

1
n

lim
M→∞

M∑
`=1

E[N2
I` ] = 1,

whereas the second term can be treated exactly as in the previous case.
It thus follows that

lim
n→∞
E

[
F2,U(1[α,β))

]
=

∫ β

α

1 − (
sin(πu)
πu

)2 du + 1[α,β)(0),

which exactly matches Montgomery’s conjecture for the zeta zeros.

7.2 The zeta function and characteristic polynomials of
random unitary matrices

The computations in the previous section suggest that the eigenvalues of a ran-
dom matrix, i.e., the zeros of its characteristic polynomial, behave similarly
to the zeros of the Riemann zeta-function. An important next step was taken
by Jon Keating and Nina Snaith in [66], who suggested that the value distribu-
tion of the characteristic polynomial of a random unitary matrix is a reasonable
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(local) model for the value distribution of the zeta-function itself. They demon-
strated the validity of this idea by comparing new theorems in random matrix
theory to known results and conjectures on the value distribution of the zeta-
function; this in turn allowed them to formulate new conjectures on the value
distribution of the zeta function, which are well-supported by numerical work.
This section gives a survey of some of the results and conjectures of Keating
and Snaith, with the numerical evidence deferred until the next section.

The following theorem and conjecture are the two main points of compari-
son on the zeta side.

Theorem 7.2 (Selberg) Let E ⊆ C be a rectangle. Then

lim
T→∞

µ

t : T ≤ t ≤ 2T,
log ζ

(
1
2 + it

)
√

1
2 log log( T

2π )
∈ E

 =
1

2π

"
E

e−
1
2 (x2+y2)dxdy,

where µ denotes Lebesgue measure on the line.

Conjecture 7.3 (Moment conjecture) Let λ ≥ 0. There is a function f (λ)
such that

lim
T→∞

1
(log(T ))λ2

1
T

∫ T

0

∣∣∣∣∣∣ζ
(

1
2

+ it
)∣∣∣∣∣∣2λ dt = f (λ)a(λ),

where the arithmetic factor a(λ) is given by

a(λ) =
∏

p

(1 − 1
p

)λ2  ∞∑
m=0

(
Γ(λ + m)
m!Γ(λ)

)2 1
pm

 .
(It is traditional to separate this arithmetic factor, which comes from number-

theoretic considerations, rather than incorporating the unknown function f (λ)
into it, but of course one could simply state the conjecture as asserting the ex-
istence of the limit on the left-hand side.) The conjecture is trivially true when
λ = 0, with f (0) = 1. It is known to be true when λ = 1, 2 with f (1) = 1
and f (2) = 1

12 . Aside from that, the conjecture is open, and prior to the work
of Keating and Snaith, there were only even conjectured values for f (λ) at
λ = 3, 4.

On the random matrix side, consider the characteristic polynomial

Z(U, θ) := det(I − Ue−iθ) =

n∏
j=1

(1 − ei(θ j−θ)),

where U ∈ U (n) has eigenvalues {eiθ1 , . . . , eiθn }. The following result is then
the analog of Theorem 7.2.
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Theorem 7.4 (Keating–Snaith) Let Z(U, θ) = det(I−Ue−iθ) be the character-
istic polynomial of a random matrix U ∈ U (n), and let E ⊆ C be a rectangle.
Then

lim
n→∞
P

 log(Z(U, θ))√
1
2 log(n)

∈ E

 =
1

2π

"
E

e−
1
2 (x2+y2)dxdy.

In the case of Conjecture 7.3, the analogous limit on the random matrix side
not only exists but can actually be computed, as follows.

Theorem 7.5 (Keating–Snaith) Let Z(U, θ) = det(I−Ue−iθ) be the character-
istic polynomial of a random matrix U ∈ U (n), and let λ ∈ C with Re(λ) > − 1

2 .
Then

lim
n→∞

1
nλ2 E

[
|Z(U, θ)|2λ

]
=

G2(1 + λ)
G(1 + 2λ)

,

where G is the Barnes G-function, defined by

G(1 + z) = (2π)
z
2 e−[(1+γ)z2+z]/2

∞∏
j=1

(1 +
z
j

) j

e−z+ z2
2 j

 ,
with γ denoting the Euler–Mascheroni constant. In particular, for k ∈ N,

lim
n→∞

1
nk2 E

[
|Z(U, θ)|2k

]
=

k−1∏
j=0

j!
( j + k)!

.

This result had a huge impact because it suggested the following conjecture
for the value of the function f (λ) in Montgomery’s conjecture.

Conjecture 7.6 (Keating–Snaith) Let f (λ) be as in Montgomery’s conjecture,
and let

fU(λ) :=
G2(1 + λ)
G(1 + 2λ)

= lim
n→∞

1
nλ2 E

[
|Z(U, θ)|2λ

]
.

Then for Re(λ) > − 1
2 ,

f (λ) = fU(λ).

As mentioned above, the values of f were only known previously at λ =

1, 2. Aside from that, there were conjectures, by Conrey and Ghosh at λ = 3
and Conrey and Gonek at λ = 4, which match the Keating–Snaith conjecture
above.

The key ingredient for the results on the characteristic polynomial stated
above is the following explicit expression for the moment generating function
of log(Z(U, θ)).
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Lemma 7.7 Let U ∈ U (n) be a random unitary matrix, and let Z(U, θ) =

det(I − Ue−iθ) denote the characteristic polynomial of U. Let s, t ∈ C with
Re(t ± s) > −2. Then for all θ ∈ [0, 2π),

E
[
|Z(U, θ)|teis Im log(Z(U,θ))

]
=

n∏
k=1

Γ(k)Γ(k + t)

Γ
(
k + t

2 −
s
2

)
Γ
(
k + t

2 + s
2

) . (7.1)

Proof First note that since the distribution of the eigenvalues of U is rotation-
ally invariant,

Z(U, θ) d
= Z(U, 0)

for all θ; we will therefore immediately specialize to θ = 0, and write Z :=
Z(U, 0).

Note also that, with probability one, none of the eigenangles θ j are 0 and so
1−eiθ j is in the right half-plane where we may unambiguously set the argument
in (−π, π).

By the Weyl integration formula,

E
[
|Z|teis Im log(Z)

]
= E


∣∣∣∣∣∣∣∣

n∏
j=1

(1 − eiθ j )

∣∣∣∣∣∣∣∣
t

eis
∑n

j=1 Im(log(1−eiθ j ))


=

1
(2π)nn!

∫ 2π

0
· · ·

∫ 2π

0

∣∣∣∣∣∣∣∣
n∏

j=1

(1 − eiθ j )

∣∣∣∣∣∣∣∣
t

e−is
∑n

j=1
∑∞

m=1
sin(mθ j )

m

×
∏

1≤ j<k≤n

|eiθ j − eiθk |2dθ1 · · · dθn,

(7.2)

where we have also expanded the logarithm in the exponent.
This integral can (with some effort) be evaluated using Selberg’s integral

formula, stated as follows.
For a, b, α, β, δ ∈ C with Re(a),Re(b),Re(α),Re(β) > 0; Re(α + β) > 1; and

−
1
n
< Re(δ) < min

{
Re(α)
n − 1

,
Re(β)
n − 1

,
Re(α + β + 1)

2(n − 1)

}
,
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J(a, b, α, β, δ, n)

:=
∫ ∞

−∞

· · ·

∫ ∞

−∞

∣∣∣∣∣∣∣∣
∏

1≤ j<k≤n

(x j − xk)

∣∣∣∣∣∣∣∣
2δ

n∏
j=1

(a + ix j)−α(b − ix j)−βdx1 · · · dxn

=
(2π)n

(a + b)(α+β)n−δn(n−1)−n

n−1∏
j=0

Γ(1 + δ + jδ)Γ(α + β − (n + j − 1)δ − 1)
Γ(1 + δ)Γ(α − jδ)Γ(β − jδ)

.

Examining the factors in the integrand in (7.2),

∏
1≤ j<k≤n

|eiθ j − eiθk |2 =
∏

1≤ j<k≤n

∣∣∣∣∣e i(θ j−θk )
2 − e−

i(θ j−θk )
2

∣∣∣∣∣2 = 2n(n−1)
∏

1≤ j<k≤n

∣∣∣∣sin
(
θ j

2 −
θk
2

)∣∣∣∣2 ,
and similarly,

∣∣∣∣∣∣∣∣
n∏

j=1

(1 − eiθ j )

∣∣∣∣∣∣∣∣ = 2n

∣∣∣∣∣∣∣∣
n∏

j=1

sin
(
θ j

2

)∣∣∣∣∣∣∣∣ .
For each θ j ∈ (0, 2π),

∞∑
m=1

sin(mθ j)
m

=
π − θ j

2

(this is just the expansion of π−x
2 as a Fourier series on (0, 2π)), and so

E
[
|Z|teis Im log(Z)

]
=

2n(n−1)+tn

(2π)nn!

∫ 2π

0
· · ·

∫ 2π

0

∣∣∣∣∣∣∣∣
n∏

j=1

sin
(
θ j

2

)∣∣∣∣∣∣∣∣
t

n∏
j=1

e−
is(π−θ j )

2

×
∏

1≤ j<k≤n

∣∣∣∣sin
(
θ j

2 −
θk
2

)∣∣∣∣2 dθ1 · · · dθn,
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Letting φ j =
θ j−π

2 now gives that

E
[
|Z|teis Im log(Z)

]
=

2n2+tn

(2π)nn!

∫ π
2

− π
2

· · ·

∫ π
2

− π
2

∣∣∣∣∣∣∣∣
n∏

j=1

cos
(
φ j

)∣∣∣∣∣∣∣∣
t

n∏
j=1

eisφ j
∏

1≤ j<k≤n

∣∣∣∣sin
(
φ j − φk

)∣∣∣∣2 dφ1 · · · dφn

=
2n2+tn

(2π)nn!

∫ π
2

− π
2

· · ·

∫ π
2

− π
2

∣∣∣∣∣∣∣∣
n∏

j=1

cos
(
φ j

)∣∣∣∣∣∣∣∣
t

n∏
j=1

eisφ j

×
∏

1≤ j<k≤n

∣∣∣sin(φ j) cos(φk) − cos(φ j) sin(φk)
∣∣∣2 dφ1 · · · dφn

=
2n2+tn

(2π)nn!

∫ π
2

− π
2

· · ·

∫ π
2

− π
2

∣∣∣∣∣∣∣∣
n∏

j=1

cos
(
φ j

)∣∣∣∣∣∣∣∣
t+2(n−1)

n∏
j=1

eisφ j

×
∏

1≤ j<k≤n

∣∣∣tan(φ j) − tan(φk)
∣∣∣2 dφ1 · · · dφn.

Now letting x j = tan(φ j) so that

cos(φ j) =
1√

1 + x2
j

sin(φ j) =
x j√

1 + x2
j

gives that

E
[
|Z|teis Im log(Z)

]
=

2n2+tn

(2π)nn!

∫ ∞

−∞

· · ·

∫ ∞

−∞

n∏
j=1


 1√

1 + x2
j


t+2n  1 + ix j√

1 + x2
j


s

×
∏

1≤ j<k≤n

|x j − xk |
2dx1 · · · dxn

=
2n2+tn

(2π)nn!

∫ ∞

−∞

· · ·

∫ ∞

−∞

n∏
j=1

[
(1 + ix j)−(n+ t

2−
s
2 )(1 − ix j)−(n+ t

2 + s
2 )]

×
∏

1≤ j<k≤n

|x j − xk |
2dx1 · · · dxn

=
2n2+tn

(2π)nn!
J
(
1, 1, n +

t
2
−

s
2
, n +

t
2

+
s
2
, 1, n

)
.

The conditions for Selberg’s integral formula to apply are that Re(t ± s) > −2;
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under these conditions, the formula yields

E
[
|Z|teis Im log(Z)

]
=

n∏
k=1

Γ(k)Γ(k + t)

Γ
(
k + t

2 −
s
2

)
Γ
(
k + t

2 + s
2

)
as claimed.

�

Proof of Theorem 7.4 As before, it suffices to consider Z = Z(U, 0). For t, s ∈
R, let

q =
s√

1
2 log(n)

r =
t√

1
2 log(n)

.

The moment generating function of the complex random variable log(Z)
√

1
2 log(n)

is

M(t, s) = E
[
|Z|reiq Im(log(Z))

]
=

n∏
k=1

Γ(k)Γ(k + r)

Γ
(
k + r

2 −
q
2

)
Γ
(
k + r

2 +
q
2

) ,
and so

log(M(t, s))

=

n∑
k=1

[
log(Γ(k)) + log(Γ(k + r)) − log

(
Γ

(
k +

r
2
−

q
2

))
− log

(
Γ

(
k +

r
2

+
q
2

))]
.

(7.3)

The idea is to evaluate the limit in a neighborhood of (t, s) = (0, 0) by first
expanding this expression as a power series in s and t and then taking the limit
as n→ ∞; the claimed central limit theorem follows if we can show that for s
and t small enough,

lim
n→∞

log(M(t, s)) = t2 − s2 = logE[etZ1+isZ2 ],

where Z1 and Z2 are independent standard Gaussian random variables.
Now, by definition M(0, 0) = 1 and so log(M(0, 0)) = 0.
For ` ≥ 0, let

ψ(`)(z) =
d`+1[log(Γ(z))]

dz`
= (−1)`+1

∫ ∞

0

t`e−zt

1 − e−t dt (7.4)

denote the `th polygamma function. Then by (7.3),

∂

∂s
[log(M(t, s))] =

1√
2 log(n)

n∑
k=1

ψ(0)

k +
t − s√
2 log(n)

 − ψ(0)

k +
t + s√
2 log(n)

 ,
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and so
∂

∂s
[log(M(t, s))]

∣∣∣∣∣
(0,0)

= 0.

Similarly,

∂

∂t
[log(M(t, s))]

∣∣∣∣∣
(0,0)

= 0 and
∂2

∂t∂s
[log(M(t, s))]

∣∣∣∣∣∣
(0,0)

= 0,

and so the power series expansion of log(M(t, s)) has no terms of order 0 or 1
and no st term.

Continuing,

∂2

∂s2 [log(M(t, s))] = −
1

2 log(n)

n∑
k=1

ψ(1)

k +
t − s√
2 log(n)

 + ψ(1)

k +
t + s√
2 log(n)

 ,
and so

∂2

∂s2 [log(M(t, s))]

∣∣∣∣∣∣
(0,0)

= −
1

log(n)

n∑
k=1

ψ(1)(k).

Using the integral expression for ψ(1) from (7.4),
n∑

k=1

ψ(1)(k) =

∫ ∞

0

t
1 − e−t

 n∑
k=1

e−kt

 dt

=

∫ ∞

0

te−t(1 − e−nt)
(1 − e−t)2 dt

=

∫ ∞

0
[(t(1 − e−nt)]

d
dt

(
e−t

1 − e−t

)
dt =

∫ ∞

0

(
e−t

1 − e−t

) [
(1 − e−nt) + nte−nt

]
dt.

Rearranging and re-expanding the geometric sums, this last expression is∫ ∞

0

[
e−t(1 − e−nt)

1 − e−t +
nte−(n+1)t

1 − e−t

]
dt

=

∫ ∞

0

 n∑
k=1

e−kt

 + nt

 ∞∑
k=n+1

e−kt

 dt =

n∑
k=1

1
k

+ n
∞∑

k=n+1

1
k2 = log(n) + O(1).

It thus follows that

lim
n→∞

 s2

2
∂2

∂s2 [log(M(t, s))]

∣∣∣∣∣∣
(0,0)

 = −
s2

2
.

The proof that

lim
n→∞

 t2

2
∂2

∂t2 [log(M(t, s))]

∣∣∣∣∣∣
(0,0)

 =
t2

2
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is nearly identical. It thus remains to show that in some neighborhood of (0, 0),
for s and t fixed,

lim
n→∞

 ∑
j+`≥3

s jt`

j!`!
∂ j+`

∂s j∂t`
[log(M(t, s))]

∣∣∣∣∣∣
(0,0)

 = 0.

From (7.3),

∂ j+`

∂s j∂t`
[log(M(t, s))]

∣∣∣∣∣∣
(0,0)

=

n∑
k=1

1 j=0ψ
`−1(k)

(
2

log(n)

) `
2

− ψ( j+`−1)(k)

 1 + (−1) j

(2 log(n))
j+`
2


 .

We will just consider the second term; the first is essentially the same, but
slightly easier.

Using the integral representation of the polygamma function and integration
by parts as above,

n∑
k=1

ψ( j+`−1)(k)

= (−1) j+`
n∑

k=1

[∫ ∞

0

t j+`−1e−kt

1 − e−t dt
]

= (−1) j+`
∫ ∞

0

t j+`−1e−t[1 − e−nt]
(1 − e−t)2 dt

= (−1) j+`
∫ ∞

0

(
e−t

1 − e−t

) [
( j + ` − 1)t j+`−2 − ( j + ` − 1)t j+`−2e−nt + nt j+`−1e−nt

]
dt.

(7.5)

Now, for n ≥ 2, ∫ ∞

0

tn−1

et − 1
dt = Γ(n)ζ(n),

and so ∫ ∞

0

(
e−t

1 − e−t

)
( j + ` − 1)t j+`−2dt

= ( j + ` − 1)
∫ ∞

0

t j+`−2

et − 1
dt = ( j + ` − 1)!ζ( j + ` − 1).

For j + ` ≥ 3, this last expression is bounded by ( j + `)!ζ(2), and so it follows
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that ∣∣∣∣∣∣∣∣
∑
j+`≥3

s jt`(−1) j+`(1 − (−1) j)

j!`!(2 log(n))
j+`
2

∫ ∞

0

(
e−t

1 − e−t

)
( j + ` − 1)t j+`−2dt

∣∣∣∣∣∣∣∣
≤ 2ζ(2)

∞∑
m=3

m∑
j=0


(
m
j

)
|s| j|t|m− j


√

1
2 log(n)


m

≤
2ζ(2)

(2 log(n))
3
2

∞∑
m=3

(|s| + |t|)m ,

which tends to zero as n→ ∞, as long as |s| + |t| < 1.
Considering the absolute value of the remaining terms in (7.5),∫ ∞

0

(
e−t

1 − e−t

) [
( j + ` − 1)t j+`−2 + nt j+`−1

]
e−ntdt

=

∫ ∞

0

[
( j + ` − 1)t j+`−2 + nt j+`−1

]
e−nt

et − 1
dt

≤

∫ ∞

0

[
( j + ` − 1)t j+`−3 + nt j+`−2

]
e−ntdt

=
1

n j+`−2

∫ ∞

0
[( j + ` − 1)y j+`−3 + y j+`−2]e−ydy

=
1

n j+`−2

[
( j + ` − 1)Γ( j + ` − 2) + Γ( j + ` − 1)

]
≤

2( j + ` − 1)!
n j+`−2 ,

where we have used the estimate et − 1 ≥ t in the first inequality.
We can now bound the contribution to the tail of the power series for log(M(t, s)):∑

j+`≥3

2|s| j|t|`

j!`!(2 log(n))
j+`
2

∫ ∞

0

(
e−t

1 − e−t

) [
( j + ` − 1)t j+`−2 + nt j+`−1

]
e−ntdt

≤
4

n(2 log(n))
3
2

∞∑
m=3

m∑
j=0

(
m
j

)
|s| j|t|m− j

=
4

n(2 log(n))
3
2

∞∑
m=3

(|s| + |t|)m,

which again tends to zero as long as |s| + |t| < 1.
We have therefore shown that if |s| + |t| < 1, then

lim
n→∞

log(M(t, s)) =
t2

2
−

s2

2
,
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which completes the proof of the bivariate Gaussian limit. �

Proof of Theorem 7.5 As usual, set θ = 0 and consider Z = Z(U, 0). Letting
s = 0 and t = 2λ in the statement of Lemma 7.7 gives that

1
nλ2 E

[
|Z|2λ

]
=

1
nλ2

n∏
k=1

Γ(k)Γ(k + 2λ)
(Γ (k + λ))2 . (7.6)

The Barnes G-function satisfies the functional equation G(z + 1) = Γ(z)G(z),
so that

Γ(z) =
G(z + 1)

G(z)
.

Expressing all the gamma functions in (7.6) as ratios of G functions in this way
leads to massive cancellation, so that

1
nλ2 E

[
|Z|2λ

]
=

G2(1 + λ)
G(1 + 2λ)

[
G(n + 1)G(n + 1 + 2λ)

nλ2G2(n + 1 + λ)

]
,

using the fact that G(1) = 1.
To prove the theorem, it therefore suffices to show that for λ fixed,

lim
n→∞

[
G(n + 1)G(n + 1 + 2λ)

nλ2G2(n + 1 + λ)

]
= 1.

For z in the right half-plane with |z| large, there is the following expansion
of log(G(z + 1)):

log(G(z + 1)) = C +
z
2

log(2π) +

(
z2

2
−

1
12

)
log(z) −

3z2

4
+ O

(
1
z2

)
.
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Taking the logarithm of the expression above and using this expansion yields

log
[
G(n + 1)G(n + 1 + 2λ)

nλ2G2(n + 1 + λ)

]
= −λ2 log(n) + log(G(n + 1)) + log(G(n + 2λ + 1)) − 2 log(G(n + λ + 1))

= −λ2 log(n) +

(
n2

2
−

1
12

)
log(n) +

(
(n + 2λ)2

2
−

1
12

)
log

(
n
(
1 +

2λ
n

))
− 2

(
(n + λ)2

2
−

1
12

)
log

(
n
(
1 +

λ

n

))
−

3n2

4
−

3(n + 2λ)2

4

+
3(n + λ)2

2
+ O

(
1
n2

)
=

(
n2

2
+ 2nλ + 2λ2 −

1
12

)
log

(
1 +

2λ
n

)
−

(
n2 + 2nλ + λ2 −

1
6

)
log

(
1 +

λ

n

)
−

3λ2

2
+ O

(
1
n2

)
=

(
n2

2
+ 2nλ + 2λ2 −

1
12

) (
2λ
n
−

2λ2

n2 + O
(

1
n3

))
−

(
n2 + 2nλ + λ2 −

1
6

) (
λ

n
−
λ2

2n2 + O
(

1
n3

))
−

3λ2

2
+ O

(
1
n2

)
= O

(
1
n

)
,

where the implicit constants depend on λ. It thus follows that

lim
n→∞

log
[
G(n + 1)G(n + 1 + 2λ)

nλ2G2(n + 1 + λ)

]
= 0,

which completes the proof.
�

7.3 Numerical and statistical work

While the connection between the zeta zeroes and the eigenvalues of random
unitary matrices remains unexplained, there is ample numerical evidence. This
section is mainly to advertise the existence of serious numerical work with
some impressive pictures; for the reader looking for more involved numerical
and statistical analysis, see the references in the end of section notes.

The earliest numerical work in this area was by Andrew Odlyzko, who
generated large tables (and then much larger tables) of zeta zeroes, which
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he first used to investigate Montgomery’s conjecture. Consider only the ze-
roes ρ with Im(ρ) > 0, and order them (with multiplicity) by imaginary part:
0 < Im(ρ1) ≤ Im(ρ2) ≤ · · · . Odlyzko computed a large number of such zeros
and found them all to be simple and lie on the critical line, so that they may be
written

ρn =
1
2

+ itn.

Recall that Montgomery’s conjecture dealt with the unfolded zeroes

wn =
tn
2π

log
( tn
2π

)
.

Rather than working with the unfolded zeroes, Odlyzko considered normaliz-
ing the spacings: for n ∈ N,

δn :=
tn+1 − tn

2π
log

( tn
2π

)
.

These two transformation are not meaningfully different for testing Mont-
gomery’s conjecture: either makes the average spacing equal to 1 at large
height.

Figure 7.1 below illustrates the pair correlations for the data set

{tn : N + 1 ≤ n ≤ N + M} ,

where N = 100000000000018097784511 and M = 203401872. The interval
[0, 3) is broken into subintervals [α, β) of length 1

20 , and for each interval [α, β),

aα,β :=
20
M
|{(n, k) : N + 1 ≤ n ≤ N + M, k ≥ 0, δn + · · · + δn+k ∈ [α, β)}| .

According to Montgomery’s conjecture, we should have

aα,β ≈ 1 −
(

sin (πγ)
πγ

)2

,

for any γ ∈ [α, β). In the figure, each interval [α, β) has a point plotted at
x =

α+β
2 , y = aα,β; the solid line is the graph of y = 1 −

(
sin(πx)
πx

)2
.

A related connection also tested by Odlyzko is the distribution of near-
est neighbor spacings. One can compute the predicted distribution of the δn

based on the limiting pair correlation; the predicted distribution is the so-called
Gaudin–Mehta distribution, which has a known, albeit not very explicit, den-
sity. Figure 7.2 below shows the empirical distribution of the δn for about 109

zeroes of the zeta function, at height approximately 1023. Each plotted point
has x-coordinate at the midpoint of an interval of length 1

20 and height given
by the proportion of the computed δn lying in that interval. The smooth curve
is the density of the predicted distribution.
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Figure 7.1 Pair correlations of (spacing-normalized) zeta zeroes around height
1023, and the random matrix prediction. Figure courtesy of Andrew Odlyzko.

Statistics related to the normalized spacings are all about the local behavior
of the zeta zeroes. More global features of Odlyzko’s data were subjected to
extensive statistical testing by Coram and Diaconis in [24]; below, we present
two of their main results, illustrated with the relevant figures from [24].

Because global statistics of random matrices (e.g., the trace) depend on the
entire ensemble of eigenvalues, a comparison with some corresponsing feature
of the zeta data requires one to first put blocks of zeta zeroes onto the unit
circle. In their statistical analysis, Coram and Diaconis used a data set con-
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Figure 7.2 (Normalized) Neighbor spacings of zeta zeroes around the 1023 zero
and the random matrix prediction. Figure courtesy of Andrew Odlyzko.

sisting of 50,000 consecutive zeros starting around the 1020th zero, which is
roughly at height T = 1.5 × 1019, corresponding to matrices of size n = 42.
First the data set was divided into blocks of length 43. Each block was then
wrapped around the unit circle so that the first and last zero were both at
z = 1, and then the circle was randomly rotated. More concretely, for each
block

{
1
2 + itn, . . . , 1

2 + itn+43

}
, let δ j = tn+ j − tn+ j−1 for j = 1, . . . , 42, and
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let ∆ j :=
∑ j

k=1 δk. Then the wrapped zeta zeroes are the (random) points
X j = exp

{
2πi

(
∆ j

∆n
+ U

)}
, where U is a uniform random variable in [0, 1).

It is a consequence of Proposition 3.11 that if {Un}n∈N is a sequence of
Haar-distributed random unitary matrices, then |Tr(Un)|2 converges to an ex-
ponential random variable with mean 1. In fact, this convergence happens very
quickly: it follows from work of Johansson [61] that if U ∈ U (n) is distributed
according to Haar measure, then for t ≥ 0,∣∣∣P[|Tr(Un)|2 ≥ t] − e−t

∣∣∣ ≤ cn−δn

for some universal constants c and δ. Coram and Diaconis computed the cor-
responding norm-squared “traces” of the wrapped zeta data; the comparison
with the random matrix prediction is given in Figure 7.3.

A different global test of the wrapped zeta data has to do with the covariance
structure of the counting function. Fix θ ∈ [0, 1], and let I(θ) be the quarter-
circle arc from e2πiθ to e2πi(θ+ 1

4 ). Let U be a random matrix in U (n), and let A(θ)
be the number of eigenvalues of U in I(θ). Finally, let

R(θ) = corr(A(θ), A(0)).

An analytic expression for the density of R(θ) was found in [17]; the compar-
ison with empirical correlations of the wrapped zeta deta is shown in Figure
7.4.

These pictures neatly convey the message of the extensive testing presented
in [24], that numerical and statistical testing bear out the connection between
zeta zeroes and random matrix eigenvalues amazingly well.



7.3 Numerical and statistical work 207

Figure 7.3 Empirical distribution of norm-squared “traces” of the wrapped zeta
data and exponential density. Reprinted by permission from IOP Publishing.

Finally, recall the conjecture of Keating and Snaith: that the distribution of
values of the characteristic polynomial of an n × n random unitary matrix is a
good model for the distribution of values of ζ at height T , where

n = log
( T
2π

)
.

The analytic evidence presented for the conjecture in Section 7.2 is the
agreement between Selberg’s central limit theorem for the logarithm of the
zeta function and Keating and Snaith’s central limit theorem for the logarithm
of the characteristic polynomial of a random unitary matrix. The numerical
data here are striking: there random matrix prediction of the value distribu-
tion of log ζ

(
1
2 + it

)
by the distribution of log(Z(U, 0)) for a random matrix U

is better than the Gaussian approximation given by the Selberg central limit
theorem! In the figures below (reproduced from [66]), the value distribution
for the real and imaginary parts of log(Z(U, 0) are computed for U distributed
according to Haar measure in U (42), and compared with value distributions
(computed by Odlyzko) of the real and imaginary parts of log ζ

(
1
2 + it

)
for t
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Figure 7.4 Estimated empirical values of R(θ) for the wrapped zeta data and the
random matrix prediction. Reprinted by permission from IOP Publishing.

near the 1020th zero (t ≈ 1.5 × 1019.) The Gaussian distributions predicted by
the two central limit theorems are also plotted for comparison.
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Figure 7.5 The value distributions of Re log(Z(U, 0)) with n = 42,
Re log ζ

(
1
2 + it

)
near the 1020th zero, and a Gaussian density, all scaled to have

variance 1. Reprinted by permission from Springer Nature.

Notes and References

For the reader looking to delve into the random matrix approach to number
theory, the volume Recent Perspectives in Random Matrix Theory and Number
Theory [82] edited by Mezzadri and Snaith is an excellent starting point; its
lectures were specifically intended to be accessible to researchers coming from
number theory and those coming from random matrix theory (and to students
just getting their feet wet in both!).

Following Montgomery’s work on pair correlations, the natural next step
was to consider k-point correlations for general k. This was first done by Rud-
nick and Sarnak [94] (in the context of more general L-functions, with the
Riemann zeta function as a special case). This problem was taken up more
recently by Conrey and Snaith [23], who introduced a new approach to the
correlations on the random matrix side, which allowed for a more transparent
comparison with the zeta zeroes.

In [57], Hughes, Keating, and O’Connell extended Theorem 7.4 by consid-
ering the entire random process Z(U, θ). They showed that if

Yn(θ) =
1
σ

Im log(Z(, θ))

with 2σ2 = log(n), then the finite-dimensional distributions of Yn(θ) con-
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Figure 7.6 The value distributions of Im log(Z(U, 0)) with n = 42,
Im log ζ

(
1
2 + it

)
near the 1020th zero, and a Gaussian density, all scaled to have

variance 1. Reprinted by permission from Springer Nature.

verge to those of Y(θ), a centered Gaussian process with covariance func-
tion EY(s)Y(t) = 1s=t. This allowed them to recover, via the argument prin-
ciple, the covariances of the eigenvalue counting functions on arcs first found
by Wieand [108]. In the same paper, they proved large deviations results for
Re log(Z(U, θ)) and Im log(Z(U, θ))

In remarkable recent work, Chhaı̈bi, Najnudel and Nikeghbali [19] have
gone considerably further, showing that, after rescaling, the characteristic poly-
nomial of a random unitary matrix converges almost surely to a random ana-
lytic function whose zeroes form a determinantal point process on the real line,
governed by the sine kernel. This in turned suggested new conjectures on the
value distribution of the zeta function, in an extension of the ideas that lead to
the Keating–Snaith moment conjecture.

Finally, although the connection between zeta zeros and eigenvalues of ran-
dom matrices remains unproved, there is a proven connection in the “function
field” case; i.e., for zeta functions for curves over finite fields. Katz and Sarnak
[63] showed that the zeros of almost all such zeta functions are described by
the random matrix model. See also the expository article [64].
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measure
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[44] B. Fleury, O. Guédon, and G. Paouris. A stability result for mean width of Lp-
centroid bodies. Adv. Math., 214(2):865–877, 2007.

[45] P. J. Forrester. Log-gases and random matrices, volume 34 of London Mathe-
matical Society Monographs Series. Princeton University Press, Princeton, NJ,
2010.

[46] P. Frankl and H. Maehara. The Johnson-Lindenstrauss lemma and the sphericity
of some graphs. J. Combin. Theory Ser. B, 44(3):355–362, 1988.



References 215

[47] Jason Fulman. Stein’s method, heat kernel, and traces of powers of elements of
compact Lie groups. Electron. J. Probab., 17:no. 66, 16, 2012.

[48] William Fulton and Joe Harris. Representation theory, volume 129 of Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 1991. A first course,
Readings in Mathematics.

[49] Yehoram Gordon. Some inequalities for Gaussian processes and applications.
Israel J. Math., 50(4):265–289, 1985.
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